6 ESPP : Ethnoécologie : savoirs, pratiques, pouvoirs

L'équipe ESPP souligne les publications de Gros-Balthazard & Battesti (et al., 2020) et de Darly, Fourault-Cauët & Raymond (2020) et son attachement à développer des recherches en réponse aux grands enjeux de société au travers d'enquêtes localisées ou multi-situées. La première publication illustre l'interdisciplinarité (mobilisant SHS et biologie) et la portée internationale des travaux de l'équipe. La seconde illustre, dans une équipe héritière au Muséum d'une tradition de recherche sur les relations au vivant au sein de sociétés rurales non industrialisées, son égal ancrage aujourd'hui dans les économies capitalistes modernes (ici les franges urbaines des grandes métropoles). Le portfolio recherche-collaborative/expertise illustre l'effort des membres de l'équipe à la production de connaissances fondamentales comme au partage de leurs compétences avec une diversité d'acteurs et d'organisations (publics et privés) attachés à répondre aux défis posés par la crise environnementale.

Référence des 2 textes :

6.1 Gros-Balthazard*, Muriel, Vincent Battesti*, Sarah Ivorra, Laure Paradis, Frédérique Aberlenc, Oumarou Zango, ... Jean-Frédéric Terral, 2020 — « On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (*Phoenix dactylifera* L.) in Siwa Oasis, Egypt ». *Evolutionary Applications*, 13 (8), p. 1818-1840, doi:10.1111/eva.12930 — en ligne: https://hal.archives-ouvertes.fr/hal-02375285

6.2 Darly, Ségolène, Véronique Fourault-Cauët & Richard Raymond (dirs) — *Marginalisations, résistances et innovations dans les franges périurbaines,* Rennes, Presses Universitaires de Rennes, Géographie sociale, viii pl., 150 p.

6.3 Recherches collaborative et Expertise

Les membres de l'équipe ESPP sont investis de différentes manières dans des recherches de type collaboratives qui peuvent également être assimilées à une activité d'expertise. Ces investissements illustrent leur attachement à mener des recherches qui soient en prise directe avec les enjeux sociétaux contemporains, en même temps qu'elles participent de la production de connaissances plus fondamentales. Mettre la production de connaissances scientifiques au service d'acteurs et d'organisations de droit public comme privé, tout en s'obligeant à la réflexion éthique qu'exige cette posture, constitue un trait d'union entre les membres du collectif ESPP et l'occasion pour le groupe de penser, ensemble, à la diversité des manières de pratiquer et produire aussi la science en société.

On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (Phoenix dactylifera L.) in Siwa Oasis, Egypt

Muriel Gros-Balthazard, Vincent Battesti, Sarah Ivorra, Laure Paradis, Frédérique Aberlenc, Oumarou Zango, Salwa Zehdi-Azouzi, Souhila Moussouni, Summar Abbas Naqvi, Claire Newton, et al.

▶ To cite this version:

Muriel Gros-Balthazard, Vincent Battesti, Sarah Ivorra, Laure Paradis, Frédérique Aberlenc, et al.. On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (Phoenix dactylifera L.) in Siwa Oasis, Egypt. Evolutionary Applications, 2020, 13 (8), pp.1818-1840. 10.1111/eva.12930 . hal-02375285v3

HAL Id: hal-02375285 https://hal.science/hal-02375285v3

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives | 4.0 International License DOI: 10.1111/eva.12930

WILEY

ORIGINAL ARTICLE

Gros-Balthazard*, Muriel, Vincent Battesti*, Sarah Ivorra, Laure Paradis, Frédérique Aberlenc, Oumarou Zango, Salwa Zehdi, Souhila Moussouni, Summar Abbas Naqvi, Claire Newton & Jean-Frédéric Terral, 2020 – « On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (Phoenix dactylifera L.) in Siwa Oasis, Egypt ». Evolutionary Applications, 13 (8), p. 1818-1840, doi: 10.1111/ eva.12930 – en ligne: https://hal.archives-ouvertes.fr/hal-02375285

On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (*Phoenix dactylifera* L.) in Siwa Oasis, Egypt

Muriel Gros-Balthazard^{1,2} | Vincent Battesti³ | Sarah Ivorra² | Laure Paradis² | Frédérique Aberlenc⁴ | Oumarou Zango⁵ | Salwa Zehdi-Azouzi⁶ | Souhila Moussouni⁷ | Summar Abbas Naqvi⁸ | Claire Newton⁹ | Jean-Frédéric Terral²

-Frédéric Terral² ២

¹Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

²Institut des Sciences de l'Évolution, UMR 5554 CNRS/Université de Montpellier/ IRD/EPHE, CC065, Équipe Dynamique de la Biodiversité, Anthropo-écologie, Université – Montpellier, Montpellier Cedex 5, France

³UMR 7206 Éco-anthropologie, CNRS, Muséum national d'histoire naturelle, Universite de Paris: Musée de l'Homme, Paris, France

⁴Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, Montpellier, France

⁵Université de Zinder, Zinder, Niger

⁶Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia

⁷Faculté des Sciences Biologiques, Laboratoire de Recherche sur les Zones Arides (LRZA), Université des Science et de la Technologie Houari Boumediene (USTHB), Alger, Algeria

⁸Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan

⁹Rimouski, QC, Canada

Correspondence

Muriel Gros-Balthazard, Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates. Email: muriel.grosb@gmail.com

Abstract

Crop diversity is shaped by biological and social processes interacting at different spatiotemporal scales. Here, we combined population genetics and ethnobotany to investigate date palm (Phoenix dactylifera L.) diversity in Siwa Oasis, Egypt. Based on interviews with farmers and observation of practices in the field, we collected 149 date palms from Siwa Oasis and 27 uncultivated date palms from abandoned oases in the surrounding desert. Using genotyping data from 18 nuclear and plastid microsatellite loci, we confirmed that some named types each constitute a clonal line, that is, a true-to-type cultivar. We also found that others are collections of clonal lines, that is, ethnovarieties, or even unrelated samples, that is, local categories. This alters current assessments of agrobiodiversity, which are visibly underestimated, and uncovers the impact of low-intensity, but highly effective, farming practices on biodiversity. These hardly observable practices, hypothesized by ethnographic survey and confirmed by genetic analysis, are enabled by the way Isiwans conceive and classify living beings in their oasis, which do not quite match the way biologists do: a classic disparity of etic versus. emic categorizations. In addition, we established that Siwa date palms represent a unique and highly diverse genetic cluster, rather than a subset of North African and Middle Eastern palm diversity. As previously shown, North African date palms display evidence of introgression by the wild relative Phoenix theophrasti, and we found that the uncultivated date palms from the abandoned oases share even more alleles with this species than cultivated palms in this region. The study of Siwa date palms could hence be a key to the understanding of date palm diversification in North Africa. Integration of ethnography and population genetics promoted the understanding of the interplay between diversity management in the oasis (short-time

Gros-Balthazard and Battesti contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

Vincent Battesti, UMR 7206 Écoanthropologie, CNRS, Muséum national d'histoire naturelle, Universite de Paris: Musée de l'Homme, Paris, France. Email: vincent.battesti@mnhn.fr

Funding information

Mosaïque program, Grant/Award Number: GDR 3353 INEE CNRS; New York University Abu Dhabi Research Institute, Grant/Award Number: Biodiversity genomics; BioDivMeX (MIST RALS programm)

1 | INTRODUCTION

The date palm, Phoenix dactylifera L., is a major perennial crop of the hot and arid regions in the Middle East and North Africa (Barrow, 1998). Its sugar-rich fruit, the date, has been consumed for millennia (Tengberg, 2012) and has long been rooted in Berber/Amazigh and Arabic cultures. Phoenix dactylifera belongs to the Arecaceae family and, along with 12 or 13 other interfertile species, composes the genus Phoenix (Barrow, 1998). Date palms exist mostly as either cultivated or feral (i.e., uncultivated but derived from cultivated palms) domesticated forms (for review, Gros-Balthazard, Hazzouri, & Flowers, 2018). Only a few relictual populations of its wild progenitor are known today in Oman (Gros-Balthazard et al., 2017), even though Tuaregs of the Tassili n'Ajjer (Algeria) consider it to be wild in their gardens (Battesti, 2004). Phoenix dactylifera is dioecious (either male or female, and only females bear fruit). Today, thousands of female cultivars are reported, varying in fruit shape, color, texture, or taste, but also in their vegetative aerial architecture (Chao & Krueger, 2007). Without addressing the existence of male "cultivars" (there is little or no vegetative reproduction of identified and named males outside of research stations), male varieties are also locally identified, but are less studied. Nevertheless, local categorization of this diversity by farmers requires clarification, starting with the adequacy of the notion of "cultivar" or what it is supposed to be.

Phoeniciculture (date palm cultivation) involves a mix of clonal and sexual propagation. In palm gardens, palm trees bear a name. The unquestioned and often implicit assumption is that each female date palm named type (for instance the famed Medjool or Khalas) is a cultivar, that is a clone, multiplied only through vegetative propagation. In order to obtain specifically female trees and to ascertain that fruits will be of the desired predictable quality, farmers mostly make use of the asexual reproduction abilities of this plant through offshoot multiplication. Indeed, sexual reproduction of date palms only leads in rare cases to progenies having equivalent or superior fruit qualities (4‰ according to Peyron, 2000), although these assessments remain subjective. For the oasis system to be efficient, despite the scarcity of water, irrigable lands, and manure, oasis communities plant and maintain 95%-99% of female palms (Battesti, 2005) instead of a natural 50:50 sex ratio (Chao & Krueger, 2007). Opting for such an artificial sex ratio requires hand pollination, a practice already used in southern Mesopotamia during the 3rd millennium BC (Landsberger, 1967), as a substitute to natural wind

scale), and the origins and dynamic of diversity through domestication and diversification (long-time scale).

KEYWORDS

agrobiodiversity, anthropology, date palm (*Phoenix dactylifera* L.), domestication, ethnobotany, evolutionary history, farming practices, folk categorization, microsatellite markers, *Phoenix theophrasti* Greuter, population genetics, Siwa Oasis (Egypt)

pollination (Henderson, 1986). Hence, farmers almost entirely restrict sexual reproduction by seeds, with a few exceptions (e.g., in India, Newton et al., 2013). Accidental seedlings are, however, sometimes spared. A resulting male may be later used for pollination. If female, its fruits are sometimes harvested and, although rare, it can lead to a new selected and named line of clones, that is, a cultivar. Another possibility, highlighted in our previous work in the oasis of Siwa, is to integrate this new genotype into an existing named type, because, from a local perspective, it is the very same variety, the same "form," or phenotype (Battesti, 2013; Battesti et al., 2018). This farming practice challenges the presumption of a named type being a true-to-type cultivar, that is, aggregating solely vegetatively propagated individuals. This may, in turn, lead to a misinterpretation and an inaccurate estimation of local agrobiodiversity.

Siwa is a desert oasis located in the Libyan Desert 300 km south of the Mediterranean coast and the closest city Marsa Matruh, and about 30 km east of the Libyan border (Figure 1). The territory is occupied by salt lakes, the "sabkha," and by the cultivated area in the form of palm groves, highly concentrated around settlement areas (Figure 1; Figure S1A). With roughly 200,000 to 250,000 palms (Battesti, 2013), dates are the main commercial crop in Siwa Oasis, closely followed by olive (Olea europaea L.). As in most oasis systems, date palm is used to feed the oasis inhabitants, but also for drinks, fodder, building materials (beams, hedges), crafts (baskets, various utensils), and daily uses (ropes, ties, brooms, furniture) (Battesti, 2005). The date palm is of primary importance, more generally, as the keystone of the oasis ecological system (microclimate effect, Riou, 1990). It is also the cornerstone of the local economy of exportation to large urban centers. The oases have a very relative autarchy and self-sufficiency, and their inhabitants export what they have in abundance: dates (Battesti, 2013; Battesti et al., 2018). Extrapolating from early 20th century data in Siwa, an estimate of 82% of the dates in value terms was exported (and 95% of the elite cultivar sacidi) (Hohler & Maspero, 1900). Several population genetics analyses focused on date palm agrobiodiversity in Siwa (Abd El-Azeem, Hashem, & Hemeida, 2011; Abou Gabal, Abedel Aziz, Hardash, & El-Wakil, 2006; El-Sharabasy & Rizk, 2019; el-Wakil & Harhash, 1998; Hemeid, Sanaa, & Abd El-Rahman, 2007; Selim, El-Mahdi, & El-Hakeem, 1970). Nevertheless, none of these studies integrate agricultural knowledge and practices, and the existing diversity in Siwa Oasis and its categorization system remain thus poorly understood.

1819

WILEY

FIGURE 1 Localization of Siwa Oasis and sampling strategy in Siwa region

In Siwa Oasis, we previously described a complex system where named types are not necessarily cloned genotypes, but ethnovarieties or local categories (Battesti, 2013; Battesti et al., 2018). To synthesize our "objectification" of the local organization of the date palm agrobiodiversity system, we proposed these definitions:

- Cultivar or true-to-type cultivar: a set of clonal individuals, that is, the association of a name and a single genotype reproduced vegetatively (asexually, by offshoot) by humans. Genotypes of a same cultivar are genetically identical, except in case of somatic mutations (McKey et al., 2010).
- Ethnovariety: a set of similar (according to local standards) lines of clonal individuals reproduced vegetatively (asexually, by offshoot) by humans deliberately under a single local name.
- Local category: a set of individuals sharing some characteristics (according to local standards, i.e., fruit color, harvesting season, usage, rusticity), typically found as seedlings, sometimes reproduced vegetatively (asexually, by offshoot) by humans but

identified under a single local name. The two largest local categories are *óțem*, the male date palms, and *úšik*, which includes all date palms resulting from sexual reproduction (not to be confused with the named types with the form *úšik xxx*, such as *úšik n gubel*). Farmers can "qualify" them sometimes individually: as *úšik maɛasil* or *úšik ɛalafī*, etc., conceiving them, as such, as qualities, not varieties.

The origins of this date palm heritage and Siwa Oasis altogether are lost in the mists of time. Siwa Oasis was well known during antiquity, in its Egyptian dynastic period, under the name of "Sexet-àm," the land of date palms (Duemichen, 1877), that included the current oasis but also the oases now abandoned in its periphery (Kuhlmann, 2013). In the classical period, the oasis was famous throughout the Mediterranean Basin for its oracle built in the 6th century BCE (Kuhlmann, 1988, 2013; Leclant, 1950), under the name of Amon Oasis (later Hellenized in Ammon). Alexander the Great was one of the most famous to consult this desert oracle, for him to confirm his divine ascendancy before his campaign of conquest in Persia. The dates of Siwa were mentioned as early as the 5th century BCE by Hellanicus of Mytilene (c. 480-c. 395 BCE) in his Journey to the Oracle of Ammon (cited by Leclant, 1950, p. 248). The date palms of Siwa were then mentioned or even celebrated by Theophrastus (c. 371- c. 288 BCE) and later Pliny the Elder (23-79 CE) and Arrian (c. 95-v. 175), before a long silence and a return under the famous Arabic authors al-Bakrī (1040-1094), al-Idrīsī (1100-1165), and al-Magrīzī (1364-1442). A few genetic studies involved date palms from Siwa (Abd El-Azeem et al., 2011; Abou Gabal et al., 2006; Gros-Balthazard et al., 2017; Hemeid et al., 2007). Nevertheless, not all named types of the oasis were studied, levels of categorization of date palm names were confused (sometimes mistaking úšik, seedlings, for a cultivar), farming practices were neglected, and only date palms cultivated in the current oasis were considered, ignoring the abandoned oases scattered in the desert. A proper assessment of date palm agrobiodiversity in Siwa region, and in a broader sense an understanding of its origin, hence, is still lacking.

Beyond the peculiar history of Siwa Oasis, the scenario of the beginning of date palm cultivation in Egypt in particular, and in North Africa in general, remains incomplete. Older evidence of exploitation is found around the Persian Gulf, while it seems that in North Africa, cultivation is more recent (Flowers et al., 2019; Tengberg, 2012). In Egypt, the date palm seems exploited or cultivated sporadically since the Old Kingdom (about 2,700-2,200 BCE), but phoeniciculture is only established since the New Kingdom, about 1,600-1,100 BCE (Tengberg & Newton, 2016). Genetic analyses of the current date palm germplasm identified two differentiated genetic clusters in North Africa and the Middle East, with evidence of gene flows, especially in Egypt (Flowers et al., 2019; Gros-Balthazard et al., 2017; Hazzouri et al., 2015; Mathew et al., 2015; Zehdi-Azouzi et al., 2015). A recent study showed that the cultivated North African pool has mixed ancestry from Middle Eastern date palms and the Aegean endemic wild relative Phoenix theophrasti Greuter, a.k.a. the Cretan date palm (Flowers et al., 2019). Nevertheless, the geographic, chronological, and historical contexts of this introgression remain enigmatic. The oasis of Siwa is located at the crossroads between Greek, Libyan, and Egyptian influences. It is on one of the rare passage points, a rare node in the network (Battesti et al., 2018), between the east and west of the distribution area of the cultivated date palm (Figure 1). A deep understanding of date palm diversity in the region could therefore enlighten the diversification history of Phoenix dactylifera in North Africa.

In this paper, we are taking our previous work on Siwa date palms (Battesti et al., 2018) to the next level, using a joint ethnographic study and genetic analysis. First, we greatly expanded the number of named types sampled in Siwa to further test whether named types are true-to-type cultivars or ethnovarieties or local categories. Secondly, we also increased our sampling of uncultivated individuals from the abandoned oases in the desert nearby Siwa (also known as "feral" in Battesti et al., 2018). This enabled olutionary Applicatio

a full assessment of local biodiversity and potential connections between the currently cultivated pool of the oasis and the uncultivated abandoned date palms. Lastly, we used genotyping data from more than 200 cultivated date palms sampled across the entire historical range of the species in order to locate Siwa diversity located within a wider germplasm diversity. By including *Phoenix theophrasti*, we can assess a possible gene flow in this particular population of date palms. From a broader perspective, our work aims at documenting the origins of phoeniciculture in Egypt and in North Africa in general.

2 | MATERIALS AND METHODS

2.1 | Plant samples and genotyping

2.1.1 | Ethnobotanical study and sample collection

We sampled 176 cultivated and uncultivated date palms in Siwa Oasis (Egypt) and surrounding desert (Figure 1; Table 1; Table S1), of which 52 were included in our previous study (Battesti et al., 2018). Those samples were collected in situ with the essential cooperation of the local farmers while conducting an ethnobotanical study (Figure S1B). VB conducted social anthropological fieldwork between 2002 and 2017, including about six months dedicated to date palm categorization and naming (Battesti, 2013). While he occasionally conducted structured interviews or held focus group discussions and free listings of date palm given names, most of his data are derived from participant observation (Battesti et al., 2018). This collection is composed of 109 accessions of date palms growing in about 46 private gardens that were deliberately chosen scattered throughout the current oasis. For each named type, we collected more than one date palm, when possible (some are rare), in order to test, with genetic data, whether they represent cloned accessions or not. We also sampled accidental seedlings growing in gardens (referred to as úšik #1) and on the border of gardens or palm groves (referred to as úšik #2). Further, 27 uncultivated date palms growing in abandoned oases in the desert were sampled (Figure 1). Those oases probably already existed during the Roman/Ptolemaic period, or at least some of them, and have been presumably abandoned since the 9th or 10th century CE (Battesti, 2013).

We additionally sampled nine *Phoenix theophrasti* Greuter in their native habitat in Crete and Turkey. Two accessions of *Phoenix reclinata* Jacq., collected in the botanical garden of the Villa Thuret in Antibes, France, and originally from sub-Saharan Africa, were included as outgroup population. For each accession, a few leaflets were collected and dried in the shade, with or without silica gel.

2.2 | DNA extraction and microsatellite genotyping

The collection was genotyped using 17 nuclear microsatellites and one chloroplastic minisatellite (Table 2), following the protocol of NILEY-

Evolutionary Applications

Species	Origin	Status	No. of samples
Phoenix dactylifera	Morocco	Cultivated	15
	Mauritania	Cultivated	5
	Niger	Cultivated	20
	Algeria	Cultivated	30
	Tunisia	Cultivated	27
	Libya	Cultivated	7
	Nilotic Egypt	Cultivated	14
	Siwa, Egypt	Named types	109
		úšik #1	18
		úšik #2	22
		Uncultivated (abandoned oases)	27
	Sudan	Cultivated	3
	Iraq	Cultivated	13
	United Arab Emirates	Cultivated	20
	Oman	Cultivated	27
	Pakistan	Cultivated	38
Phoenix theophrasti	Crete/Turkey	Wild relative	9
Phoenix reclinata	Sub-Saharan Africa	Wild relative	2

TABLE 1 Summary of the 406 accessions of Phoenix spp. included in this study

Note: The species and the country/region of origin are provided along with the status. For Siwa current oasis, the status is set as follows: "named types," for cultivated accessions for which we want to check the status; "úšik #1" and "úšik #2" which refer to accidental seedlings growing respectively in gardens (#1) or on the border of gardens or palm grove (#2). Were also analyzed uncultivated date palm accessions sampled in abandoned oases scattered in the desert surrounding the current Siwa Oasis (Figure 1).

Zehdi-Azouzi et al. (2015). We crushed 40 mg of dried leaves in a fine powder using bead-mill homogenizer TissueLyser (Qiagen, Courtabœuf, France). Total genomic DNA was extracted from leaf powder using DNeasy Plant MINI Kit (Qiagen, Courtabœuf, France). The plastid dodecanucleotide minisatellite identified in the intergenic spacer psbZ-trnfM (Henderson, Billotte, & Pintaud, 2006) was genotyped. It has been previously used to define the date palm chlorotype (so-called occidental or oriental), depending on its number of repeats (three or four, respectively), and to barcode *Phoenix* species (Ballardini et al., 2013; Gros-Balthazard et al., 2017; Pintaud et al., 2010; Zehdi-Azouzi et al., 2015).

In addition to this newly generated genotyping dataset, we utilized *P. dactylifera* genotyping data from previous studies (Moussouni, Pintaud, Vigouroux, & Bouguedoura, 2017; Zango et al., 2017; Zehdi-Azouzi et al., 2015) (Table S1). Both these data and our new data relied on the same set of microsatellite markers and were generated by the same company (ADNid, Montpellier, France) with the same protocol, enabling a meta-analysis. These additional accessions are a good representation of the cultivated germplasm as their origin spans the historic date palm distribution, stretching from North Africa to the Middle East and Pakistan (Barrow, 1998).

2.2.1 | Genotyping data analysis

Statistical analysis was conducted with the *R* Statistical Programming Language (R Core Team, 2015), unless otherwise stated. To identify duplicated genotypes among the whole dataset, we performed an identity analysis using Cervus v3.0.7 (Kalinowski, Taper, & Marshall, 2007). For each pair of accessions, Cervus calculates the number of matching genotypes across the 17 nuclear loci. We used the same software for calculation of the polymorphic information content (PIC) for each locus. We estimated null allele frequencies using *null.all* function in the *R* package *PopGenReport* (Adamack & Gruber, 2014; Gruber & Adamack, 2015). For each locus, the number of alleles N_A , and the observed (H_o) and expected heterozygosity (H_s) were estimated using the *R* package *pegas* (Paradis, 2010). The deviation from Hardy– Weinberg equilibrium was estimated using the function *hw.test* from the same package.

2.2.2 | Date palm agrobiodiversity in Siwa

For each named type of Siwa, we checked whether they are actual true-to-type cultivars or rather represent a group of more or less

TABLE 2 List of microsatellite loci and their summary statistics calculated on the 406 *Phoenix* spp. accessions included in the present study

Locus	References	% MD	N ₀	# All	PIC	Ho	He	HWD
cpM12	Henderson et al. (2006)	7.35	/	5	/	/	/	/
mPdCIR015	Billotte et al. (2004)	0.25	0.038	12	0.771	0.74	0.8	0.00
mPdCIR016	Billotte et al. (2004)	0.00	0.090	6	0.663	0.6	0.71	0.00
mPdCIR032	Billotte et al. (2004)	0.74	0.098	13	0.685	0.58	0.71	0.00
mPdCIR035	Billotte et al. (2004)	8.58	0.170	12	0.554	0.42	0.59	0.00
mPdCIR057	Billotte et al. (2004)	0.00	0.065	11	0.599	0.55	0.62	0.00
mPdCIR085	Billotte et al. (2004)	0.00	0.038	19	0.847	0.8	0.86	0.00
PdAG1-ssr	Billotte et al. (2004)	0.00	0.053	36	0.888	0.81	0.9	0.00
mPdCIR010	Billotte et al. (2004)	0.00	0.055	18	0.771	0.71	0.79	0.00
mPdCIR025	Billotte et al. (2004)	0.00	0.025	18	0.791	0.77	0.81	0.00
mPdCIR063	Billotte et al. (2004)	2.21	0.087	14	0.681	0.61	0.72	0.00
mPdCIR078	Billotte et al. (2004)	0.00	0.057	27	0.886	0.79	0.88	0.00
PdCUC3-ssr1	Accession number: HM622273	0.25	0.000	5	0.017	0.02	0.02	1.00
PdCUC3-ssr2	Accession number: HM622273	0.00	0.119	9	0.885	0.77	0.86	0.00
mPdIRD013	Aberlenc-Bertossi et al. (2014)	0.00	0.072	31	0.159	0.7	0.88	0.00
mPdIRD031	Aberlenc-Bertossi et al. (2014)	0.49	0.036	4	0.356	0.13	0.16	0.00
mPdIRD033	Aberlenc-Bertossi et al. (2014)	0.00	0.110	4	0.479	0.33	0.35	0.00
mPdIRD040	Aberlenc-Bertossi et al. (2014)	0.00	0.040	5	0.593	0.39	0.48	0.00

Abbreviations: % MD, Proportion of missing data; N_0 , null allele frequency; # All), number of alleles; PIC, polymorphic information content; Ho and He, observed and expected heterozygosity; HWD, deviation from Hardy–Weinberg p-value.

distant genotypes (ethnovariety, local category). For this purpose, we calculated a measure of identity by averaging over each named type the proportion of matching genotypes across the 18 chloroplastic and nuclear loci. For true-to-type cultivars, this number is expected to be 100%, except in case of somatic mutations or genotyping error. Second, we calculated the Euclidean distance between each of the Siwa samples (function *dist*, *R* package *stats*) and built a heatmap of those distances using *heatmap* function (*R* package *stats*).

To investigate the extent of the diversity in the whole region, and not only in the oasis, we included uncultivated date palms from the abandoned oases in the following analyses. We generated a neighbor-joining tree based on Nei's genetic distance (Nei, 1972) using *aboot* function in *poppr* package (Kamvar, Tabima, & Grünwald, 2014) with 100 bootstrap replicates.

For each line of clones identified with these analyses, we kept a single accession for downstream analyses and performed a principal component analysis using function *dudi.pca* in the *ade4* package (Dray & Dufour, 2007). Missing data were replaced by the mean allele frequencies using the function *scaleGen* from the *R* package *adegenet* (Jombart & Ahmed, 2011).

2.2.3 | Extent and partitioning of worldwide date palm diversity

To draw up a picture of the overall *Phoenix* population structure, we applied two different approaches to our dataset comprising 128

unique genotypes from Siwa, 219 date palms originating from all over its historical distribution area, and nine wild Phoenix theophrasti. First, we performed a principal component analysis, as described above for Siwa accessions only. We further used the Bayesian clustering method based on a Markov chain Monte Carlo (MCMC) algorithm implemented in Structure v2.3.3 (Pritchard, Stephens, & Donnelly, 2000). Individuals are partitioned into a predefined number of clusters (K) so as to minimize linkage disequilibrium and deviation from Hardy-Weinberg within cluster. Allelic frequencies at each locus are calculated at the same time for each cluster. Genotyped individuals were allocated to one to eight clusters K. All runs were performed using a model allowing admixture and correlated allele frequencies among populations (Falush, Stephens, & Pritchard, 2003). A 100,000-iteration burn-in period was followed by 1,000,000 MCMC steps. Ten independent runs were performed for each specified K, and the convergence of likelihood values was checked for each K. The optimal value of K was estimated using both the approach of Pritchard et al. (2000) based on the maximization of the log likelihood, and the approach of Evanno, Regnaut, and Goudet (2005) based on the rate of change in the log likelihood between successive K values (delta K).

For each population pair, we estimated a measure of differentiation (F_{ST}) using the Genepop software v. 4.7 (Rousset, 2008). The proportion of shared alleles between populations and subpopulations was calculated with the *pairwise.propShared* function of the *R* package *PopGenReport* (Adamack & Gruber, 2014; Gruber & Adamack, 2015). Further, we calculated various diversity estimates Evolutionary Applications

for each population. The allelic richness and private allelic richness were calculated with a custom R script. Because the numbers of distinct alleles and private alleles depend heavily on sample size in each population, we used the rarefaction method (Petit, El Mousadik, & Pons, 1998), allowing a direct comparison among populations of different sample size. For each set of comparison, we thus used the smallest haploid sample size (n = 18 in Phoenix theophrasti) as the number of alleles to sample, and ran 1,000 replicates of allelic and private allelic richness calculation. To test for significant differences among populations, these diversity estimates were assigned to Tukey groups (function HSD.test, Agricolae package, de Mendiburu, 2015) at a significant threshold of 0.05. Expected and observed heterozygosity (H_s and H_o) were calculated using the *basic.stats* function of the R package hierfstat. The inbreeding coefficient F_{1s} was calculated with the same package, and confidence intervals were estimated by performing 1,000 bootstrap replicates over loci with the function boot.ppfis.

3 | RESULTS

A total of 406 *Phoenix* spp. samples (Table 1; Table S1) genotyped across 17 nuclear microsatellites and one chloroplastic minisatellite (Table 2) were analyzed in the present study. We report new genotyping data for 176 cultivated and uncultivated date palms from the Egyptian oasis of Siwa and the surrounding abandoned oases (Figure 1; Figure S1C), nine *Phoenix theophrasti*, and two *Phoenix reclinata* (Table S2). Additional genotyping data for 98 Middle Eastern/Asian and 121 North African date palms were retrieved from previous studies (Moussouni et al., 2017; Zango et al., 2017; Zehdi-Azouzi et al., 2015).

Missing data across the full dataset were very limited with an average of 1.1%, and the mean null allele frequency was 6.8%, on average, across all 18 chloroplastic and nuclear loci (Table 2). All loci were polymorphic, with four to 31 alleles and an average polymorphic information content of 0.625. All loci deviated significantly (p < .05) from Hardy–Weinberg equilibrium except Cuc3-ssr1. Except for some Siwa samples (see below), all accessions were unique, as no pair of accessions displayed 18 matches across the 18 chloroplastic and nuclear loci (Table S3).

3.1 | Ethnographic and genetic analysis of date palms in Siwa region

3.1.1 | On the local named types of Siwa Oasis

The ethnobotanical field survey identified the existence of 18 named types in Siwa Oasis (Table 3). Based on ethnographic work, some were hypothesized as true-to-type cultivars, as they are supposed to only arise by planting offshoots, according to farmers' accounts. Meanwhile, the fieldwork already allowed us to suppose that some of those named types are not true-to-type cultivars, as

FABLE 3	Named type of Siwa, sampling effort, and genetic
dentity	

Named type	No. of sample	Nuc Identity	Cp Identity
șacidi [tasutet]	13	97.59%	100%
alkak	11	100%	100%
ayzāl	4	97.06%	100%
ḥalu en ɣanem	3	100%	100%
tațțagt	8	100%*	100%
úšik niqbel/ úšik en gubel	12	69.96%	92.86%
ɣrom aɣzāl	6	28.02%	88.03%
alkak wen žemb	6	28.24%	88.44%
ɣrom ṣaɛid	2	29.41%	0%
lekrawmet	4	40.20%	100%
úšik amayzuz/ amayzuz	2	23.53%	100%
úšik azzugay	4	31.92%	100%
amenzu	7	24.56%	90.68%
úšik nekwayes	11	29.41%	84.04%
úšik ezzuwaɣ/ zuwaɣ [tazuwaɣt]	8	27.95%	46.43%
kaɛibī	6	20.39%	40.00%
úšik #1	18	23.97%	47.06%
úšik #2	22	27.02%	58.44%
tazuwayt	1	/	/
tažubart	1	/	/

Note: For each named type, the local name of the dates is given, followed by the possible name of the palm [in brackets]. The identity is the average proportion of matching genotypes among accessions of a given named type and across the 17 nuclear microsatellites (Nuc Identity) and the chloroplastic minisatellite (Cp Identity). *one accession (3,377) was identified as an identification error of the informer. When included, average identity across this set of accession is 79.41%.

farmers recognized the possibility that they partially or totally arise from seeds.

To investigate this question, we calculated genetic identity among accessions of each given named type, based on 17 nuclear microsatellites and one chloroplastic minisatellite (Table S3). The named types sacidi and alkak, the main cultivated and exported dates of Siwa, show proportion of identities of 97.6% and 100% at the nuclear level, respectively, and of 100% at the chloroplastic locus (Figures 2 and 3; Table 3). The named type alkak is locally known to come only from an offshoot, but different "qualities" can be distinguished, depending on growth conditions and age. The sacidi is the emblematic "palm reproduced by offshoot," which Isiwans always oppose to úšik, the seedlings. Although slightly different (on a single locus; Table S2), the 13 sacidi accessions cluster together (Figure 3), and we hypothesize that this subtle genetic variation is due to somatic mutations or genotyping error. Hence, the two Siwa elite named types are indeed true-to-type cultivars.

FIGURE 2 Intra-named type variation and structure in Siwa date palms. (a) Relatedness among the 149 cultivated date palms sampled in the current Siwa Oasis and genotyped across 17 nuclear microsatellite loci. Intra-named type variation is expected to be zero or near zero (red), in case of somatic mutations, while for ethnovarieties and local categories, we expect a higher intra-named type variation (yellow). (b) Principal component analysis of 128 unique date palm genotypes from both the current oasis of Siwa and the abandoned oasis of the region. Variance explained by each principal component (PC) is provided within parentheses

Have been also analyzed as true-to-type cultivars three other named types: ayzāl, tattagt, and halu en yanem. The famous ayzālrare but valued by the Isiwan as a tonic for lack of energy (Fakhry, 1990, p. 27) and for its aphrodisiac properties (for men)-is here represented by four accessions, three of which being identical and one showing a single allelic difference that we thus hypothesized to be a somatic mutation or genotyping error (Figure 3; Table 3; Tables S2-S3). The named type tattagt refers to a very soft date rich in water, whose name is taken from a maturation stage in the Siwa language: One half of the fruit is brown and ripe, and the other half is yellow and immature. Because it keeps very poorly, it is always eaten on the spot, but is highly appreciated locally. It was studied using eight accessions, of which a single one (3377) appears to be very different from the other genetically uniform accessions (Figures 2,3; Table 3; Tables S2–S3). The informant for this accession was a young farmer, and we presume that he was wrong about his identification. Hence, we believe that tattagt is a true-to-type cultivar, even if different qualities of tattagt are reported by our ethnography. The fifth confirmed cultivar is halu en yanem (100% identity over the three studied accessions in both nuclear and chloroplastic loci, Figure 3; Table 3; Tables S2-S3): relatively few farmers in Siwa know of its existence, but its long dates are highly appreciated by connoisseurs,

so soft and sweet that the seed remains attached to the bunch when the fruit is plucked.

Further, we can confirm some named types as ethnovarieties: yrom ayzāl and úšik niqbel indeed group some individuals having the same genotypes (clones) but also some that are isolated in different clades (Figure 3; Table 3). The first is said to resemble ayzal and the second sacidi, but in both cases of lower quality.

An intermediate case is alkak wen žemb: The six samples are unrelated except two which are from the same clone, but coming from the same garden a few meters away. Etymologically, alkak wen žemb is a "relegated," "put aside," that is, a second class alkak, but it has always been, without much ambiguity, referred to as a cultivar and cannot come from a seed, according to farmers. Under the names lekrawmet, amenzu (etymologically "early" dates, Laoust, 1932), or yrom sacid, we only identified unrelated individuals (Figures 2 and 3; Table 3). These are clearly not true-to-type cultivars despite them being explicitly thought by local farmers as never coming from a seedling; apparently, they often have been, although the occurrences may be too distant for local memory. They are thus interpreted as ethnovarieties.

Decisions are more difficult to reach in the following cases: úšik azzugay, úšik amayzuz, tažubart, and tazuwayt. The last two are only

FIGURE 3 Genetic similarity of Siwa date palms based on neighbor-joining tree reconstructed from Nei's genetic distances. On the right of the tree, colored vertical lines connect samples of the same named types. Nodes supported by bootstrap values > 80% are indicated by black dots. The tree has been rooted with two Phoenix reclinata (not shown). The different samples of a true-to-type cultivar are expected to aggregate together, while samples of ethnovarieties would form different lines of clones, and samples of local categories would be scattered across the tree, denoting their lack of relatedness

known to a handful of farmers, and we have only one sample of each, preventing an intra-type identity analysis. Tažubart is said to look like şaɛidi and tazuwaɣt like úšik ezzuwaɣ (zuwaɣ). The first two are more widely known, but two amaɣzuz (etymologically "late" dates, Laoust, 1932) samples do not allow us to reach a conclusion. Regarding úšik azzugaɣ, we have two closely related palms from unrelated gardens and farmers, but also two isolated samples. Local farmers say úšik azzugaɣ are not (necessarily) reproduced by offshoot and can be from a seedling (úšik). They are sometimes described as "all úšik (seedlings) that yield red dates," "azzugaɣ" meaning clearly "red" in *jlan en Isiwan*, the local Amazigh language. By combining genetic information and ethnographic data, these four types thus all seem to be possible "local categories."

We are quite certain that the following named types are neither cultivars nor ethnovarieties: obviously, and as expected, the inclusive local category of *úšik* in general (all female seedlings), but also *úšik* ezzuway (*úšik* selected/cultivated with good reddish/dark dates), kaɛibī (*úšik* selected/cultivated with good dry dates), and *úšik* nekwayes (all *úšik* selected/cultivated with dates suitable for human consumption). Indeed, the field survey showed they refer to individuals sharing fruit characteristics and/or originate from seedlings, and the genetic analysis confirmed that samples are unrelated (Figures 2 and 3; Table 3). Four *úšik* nevertheless present the same microsatellite profiles as the Siwa widespread cultivar şaɛidi (Figure 3) meaning that these were actually şaɛidi but thought wrongly, by the sampler, to be accidental seedlings (because they were found in abandoned areas of the palm grove).

Following this identity analysis, we removed 58 genotypes from the initial Siwa dataset in order to only keep 128 unique genotypes in downstream analyses.

3.1.2 | Structure of date palm diversity within Siwa region

To study the structure of the diversity of date palms in the region of Siwa, we studied named types and seedlings (úšik) from the oasis, but also uncultivated date palms from abandoned oases scattered across the desert surrounding Siwa (Figure 1). We found that the genetic diversity is mainly distributed between oasis samples versus samples from outside the oasis (i.e., the ancient abandoned oases in the desert), as the principal component (PC) 1 mostly draws apart those two types of date palms (Figure 2b). Identically, the NJ tree shows that the uncultivated date palms from the desert roughly form a distinct clade (Figure 3). Some accessions from the current oasis can nevertheless be found in the cluster formed by the desert uncultivated palms, mostly seedlings (úšik #1 and #2), but also named types, such as tattagt. The second PC opposes the two main cultivars, namely alkak and sacidi. Alkak, and a few other accessions, appears isolated from the other accessions of the region, including its relegated counterpart, alkak wen žemb (Figure 2b). The seedlings (úšik) do not form a distinct population. Here, we differentiated the úšik from the gardens that may be tended, depending on their use,

Evolutionary Applications

irrigated, as other date palms of the garden, and pollinated (úšik #1) from those that are not (úšik #2). For farmers, there is no difference and we could not separate them based on their microsatellite profiles (Figure 2b).

3.2 | Comparing the diversity of date palm in Siwa and worldwide

We compared 128 unique genotypes collected in Siwa Oasis and in the abandoned oases from the surrounding desert (Figure 1) with 219 date palms originating from North Africa and the Middle East (data from Moussouni et al., 2017; Zango et al., 2017; Zehdi-Azouzi et al., 2015), and nine newly genotyped *Phoenix theophrasti*. We investigated the population structure of these 358 unique genotypes with both principal component analyses and Bayesian clustering, calculated F_{ST} between various populations and subpopulations, and estimated diversity in various populations and subpopulations.

3.2.1 | Partitioning and extent of the diversity in *P. dactylifera* and *P. theophrasti*

The principal components (PCs) 1 and 2 both separate *Phoenix theophrasti* from *Phoenix dactylifera* accessions (Figure 4a), accounting for the large differentiation observed between these two species (F_{ST} = 0.32; Table S4). Additional PCs do not provide notable results (Figure S2). On a side note, *Phoenix reclinata* being highly differentiated from other accessions (Figure S2), we excluded it from downstream analyses.

The PC 1 describes the geography among date palm accessions, with Middle Eastern and North African accessions (including Siwa) being stretched from left to right (Figure 4a,b). These two clusters are the first ones to emerge in the Bayesian clustering analysis (Figure 4c; K = 2), and this partitioning is optimal according to the Evanno method (Figure S3). Eastern and western date palms are moderately differentiated, with $F_{ST} = 0.088$ or 0.084, whether Siwa accessions are included in the western cluster or not. The diversity among North African date palms is higher than among Middle Eastern date palms. Indeed, their levels of both allelic richness and private allelic richness, calculated with equal sample size, are significantly higher than that found in eastern date palms (Figure S4; Tukey's tests, p < .05), and their expected heterozygosity reaches 0.62 while eastern populations display 0.58 (Table 4).

Interestingly, Siwa date palms overlap only slightly with the western and eastern clusters in the PCA (Figure 4a,b). Similarly, in the Bayesian clustering analysis, Siwa accessions form a distinct cluster from K = 3(Figure 4c). With an additional K, four clusters, corresponding mostly to P. theophrasti, eastern cultivars, western cultivars (excluding Siwa samples), and Siwa date palms, can be identified (Figure 4c; Table S5). Nevertheless, over-representation of related accessions may lead to spurious clustering in both PCA and structure analyses. In this study, we included a very large number of accessions from Siwa compared

FIGURE 4 Worldwide structure of the diversity in date palms (*Phoenix dactylifera* L.) and *Phoenix theophrasti* Greuter. (a) Principal component analysis of 356 date palm and *P. theophrasti* accessions genotyped across 17 nuclear microsatellites. (b) Principal component analysis of 347 date palm accessions genotyped across 17 nuclear microsatellites. (c) Admixture proportion in 356 date palm and *Phoenix theophrasti* accessions with K equal 2 to 5. Each individual is represented by a vertical bar partitioned into colored segments representing the assignment coefficient or ancestry, that is, the estimated proportion of its genome derived from each cluster. (d) Allelic richness (left) and private allelic richness (right) calculated in four populations using the rarefaction method to equalize sample size across populations (haploid sample size = 18, bootstrap replicates = 1,000)

to the number of date palms from the Middle East and North Africa. Hence, we ran two other PCAs (with and without *P. theophrasti*) in which we randomly sampled ten accessions from Siwa Oasis and five accessions from the surrounding desert (Figure S5). We found that the accessions from the current oasis are found within the diversity of North African date palms. Nevertheless, when *P. theophrasti* is included, Siwa accessions sampled in the oasis are found at the edge of the North African point cloud; when this species is not included, Siwa accessions can be differentiated from North African accessions with PC4. On the other side, most uncultivated date palms from the surrounding desert are not overlapping with North African accessions or any other palms (Figure S5).

 TABLE 4
 Diversity estimates calculated in Phoenix theophrasti

 and various populations and subpopulations of Phoenix dactylifera

Populations	H _o	H _s	F _{IS} (95% CI)
P. dactylifera	0.56	0.63	0.10 (0.084 - 0.14)
Siwa	0.56	0.60	0.060 (0.016 - 0.11)
Uncultivated desert	0.55	0.64	0.14 (0.072 - 0.23)
Oasis	0.56	0.57	0.015 (-0.028 - 0.066)
named type	0.55	0.56	0.0077 (-0.036 - 0.054)
úšik #1	0.59	0.60	0.025 (-0.048 - 0.078)
úšik #2	0.57	0.59	0.02 (-0.060 - 0.12)
Eastern	0.57	0.58	0.013 (-0.012 - 0.038)
Western (with Siwa)	0.56	0.62	0.095 (0.064 - 0.14)
Western (without Siwa)	0.56	0.61	0.081 (0.052 - 0.12)
P. theophrasti	0.17	0.42	0.59 (0.26 - 0.83)

Note: Abbreviations: H_o , observed heterozygosity; H_s , expected heterozygosity; F_{Is} , inbreeding coefficient.

Diversity estimates were calculated on western (or North African date palms) including or not Siwa accessions. Siwa population was split into two populations to oppose accessions sampled in the oasis (both named types and seedlings) with those sampled in abandoned oases in the surrounding desert. Further, accessions sampled in the oasis were further split into three populations: the named types and the seedlings collected in or nearby the gardens (úšik #1 and #2, respectively).

For the following sections, we thus consider those four populations, where Siwa and western populations are distinct. Siwa date palms appear more distinct from eastern (F_{ST} = 0.12, proportion of shared allele = 56.68%) than from western accessions (F_{ST} = 0.057, proportion of shared allele = 72.78%). In the Structure analysis, they share only, on average, 2.73% of their ancestry with the eastern cluster, while 7.66% can be traced to the western cluster (Figure 4c, Table S5). The only Siwa accession with mostly eastern ancestry is an úšik ezzuwaɣ (3363), collected in the heart of the old palm grove (in Jubba annēzi). Noteworthy, Siwa accessions are as diverse as eastern accessions in terms of allelic richness (calculated using equal sample size; Figure 4d) and even more diverse in terms of expected heterozygosity (Table 4).

On the one hand, the inferred ancestry constituting the Siwa cluster (Figure 4c, in black) is not only found in Siwa. Although it is almost absent in eastern cultivars (0.93% on average), it is substantial in western date palms (11.85% on average). It is prominent in the two Libyan accessions (Figure 4c): They share on average 89.86% of their ancestry with the Siwa cluster, the remainder being ancestry shared with the western cluster. On the other hand, we found that samples from Nilotic Egypt share ancestry with three clusters: mostly western (64.36%), but also eastern (18.36%) and Siwa clusters (16.81%). The evidence of shared ancestry with Siwa in the Nilotic Egypt cultivars is mostly driven by Hamra and Wardi cultivars (both from Aswan Governorate), having both > 70% of their ancestry shared with this cluster (a caravan road links Aswan to Siwa), while most other Nilotic

olutionary Applicati

Egyptian date palms share < 1% ancestry with this cluster. The four Sudanese accessions share ancestry with both Siwa (28.30%) and western date palms (70.97%) and do not display ancestry traceable to the eastern cluster. We note that other North African countries share only a little of their ancestry with the Siwa cluster: Morocco (1.5%), Mauritania (1.26%), Algeria (3.56%), and Tunisia (1.42%), the exception being Niger, with an average of 15.55%, driven by three cultivars (Kila72, Ja5, Jahaske2, all three from Goure, Zinder region, and southwest Niger, a new region for phoeniciculture) with 94.80%, 92.30%, and 73.40% of ancestry attributed to the Siwa cluster, respectively.

3.2.2 | Shared ancestry between *P. dactylifera* and *P. theophrasti*

Structure results show shared ancestry between Phoenix dactylifera and Phoenix theophrasti (Figure 4c). Indeed, eastern and western date palms share respectively 25.26% and 32.49% of alleles with the Cretan date palm. Structure results show shared ancestry between P. theophrasti and western date palms, but not with eastern date palms, except in Pakistan, probably due to recent introduction of African germplasm as reported before (Chaluvadi et al., 2019; Mathew et al., 2015). Further, western date palms appear less distinct from P. theophrasti (F_{ST} = 0.32) than eastern do (F_{st} = 0.40). While we reported above that western accessions display more private alleles than eastern ones (Figure S4), when we include P. theophrasti in the analysis, they display on the opposite fewer private alleles than eastern ones (Figure 4d). Indeed, over the 227 alleles identified across the 17 loci, 17 (7.5%) are shared by P. theophrasti and North African date palms, but not by Middle Eastern date palms. This shared ancestry may be evidence of either common descent or gene flows or both.

Curiously, Siwa accessions share even more ancestry with *P. the*ophrasti than the other date palms (cultivars) of North Africa, including Nilotic Egyptian ones. Structure results indicate they have up to 29.3% of their genetic makeup shared with *P. theophrasti* cluster (on average: 1.24%, Table S5). They are also closer, and especially the uncultivated ones, to this wild Cretan relative on PC1 than western date palms are (Figure 4c, from K = 4) and share more alleles (35.58%) with this species than western do (32.49%).

Finally, Structure results show that there is also potential gene flow in the other direction, from *Phoenix dactylifera* to *P. theophrasti*. Indeed, two samples of the Cretan date palm display ancestry attributed to the date palm (Figure 4c).

3.2.3 | Partitioning and extent of the diversity within Siwa region

Siwa accessions can be further split into two distinct clusters, as seen previously (Figure 2b), and highlighted in both the Bayesian clustering (Figure 4c, from K = 5) and the PCAs (Figure 4a,b).

Evolutionary Applications

These two clusters mostly fit the predefined Siwa populations, with a cluster comprising mostly accessions from the current oasis (Figure 4c, in black at K = 5), while the second comprises mostly uncultivated desert date palms from the abandoned oases (in orange at K = 5). Oasis and desert date palms are slightly differentiated ($F_{ST} = 0.055$). Uncultivated desert date palms are less differentiated from western date palms ($F_{ST} = 0.051$) than the cultivated Siwa date palms are ($F_{ST} = 0.069$). The accessions from the oasis, in contrast, are less differentiated from eastern date palms (Table S4).

Remarkably, the desert uncultivated accessions appear even less differentiated from *P. theophrasti* ($F_{ST} = 0.28$) than the accessions sampled in the oasis ($F_{ST} = 0.35$, Figure 4a,c, Table S4). Structure results indicate an average shared ancestry of 4.10% between desert uncultivated accessions and *P. theophrasti*, while solely 0.33% of current oasis accession ancestry can be traced to this species (Table S5, Structure at K = 4). Further, they share more alleles with *P. theophrasti* than Siwa Oasis cultivated do (38.89% and 34.45%, respectively). Those abandoned desert palms have almost no trace of the eastern ancestry (0.63%), in contrast to the named types from the oasis (3.07%). They are highly diverse in terms of gene diversity (Table 4) and have, on average, more private alleles than the date palms from Siwa Oasis (Figure S4, Tukey's test, p < .05).

The spontaneous seedlings found within and at the periphery of Siwa gardens (úšik #1 and #2, respectively) are found within the diversity of uncultivated and cultivated date palms of Siwa (Figures 3b, 3, 3c; Figure S6). They appear intermediate between named types and uncultivated desert palms in terms of genetic makeup (Figure 4c; Table S4, Figures S7–S8 at K = 5). Indeed, úšik #1 and #2 have 19.63% and 48.24% of ancestry shared with the Siwa desert uncultivated cluster, respectively (in orange at K = 5, Figure 4c and Figure S8), and 71.21% and 47.57% shared with the named types cluster, respectively (in black at K = 5, Figure 4c and Figure S8).

3.2.4 | Diversity at the chloroplast minisatellite in Siwa and worldwide

We identified five alleles at the chloroplastic locus psbZ-trnfM (Table S2). Two of them were restricted to *Phoenix reclinata* and one of them to *Phoenix theophrasti* (Figure S9). In *Phoenix dactylifera*, we identified the two previously reported alleles corresponding to the so-called occidental and oriental chlorotype (Gros-Balthazard et al., 2017; Zehdi-Azouzi et al., 2015). Eastern accessions mostly display the oriental chlorotype (94.90%, Figure S9). The occidental chlorotype is predominant in the western accessions (71.74%), although there is a significant presence of the oriental one, reflecting seed-mediated gene flows from east to west more prominent than in the other directions (as shown by Gros-Balthazard et al., 2017; Zehdi-Azouzi et al., 2015). Most North African countries display a higher proportion of occidental chlorotype (Figure S9), except Mauritania as reported before (Gros-Balthazard et al., 2017).

Two accessions of *Phoenix theophrasti* display the date palm western chlorotype (Figure S9). These accessions also have ancestry that is mostly attributed to date palm in the Structure analysis (Figure 4c). This could indicate potential gene flow from the date palm to this wild relative, as previously reported (Flowers et al., 2019).

In Siwa, occidental and oriental chlorotypes are found in almost equal proportion (47.65% and 52.34%, respectively). Among the named types of the oasis though, the oriental chlorotype is slightly predominant (59.70%, Figure S9), while we found the opposite pattern in the Nilotic Egyptian cultivars (42.86%). As for the uncultivated date palms from the abandoned oases of Siwa desert region, we found that they display mostly the occidental chlorotype (74.1%).

4 | DISCUSSION

In this paper, we studied date palms from Siwa using a combined molecular population genetic and ethnographic approach in order to (a) better understand folk categorization in conjunction with local agrobiodiversity and (b) infer the origins and the dynamic of the diversity found in this oasis and around, by comparing it to the worldwide date palm germplasm.

4.1 | On the folk categorization in Siwa and its implication for surveying date palm agrobiodiversity

4.1.1 | Differentiating cultivar, ethnovariety, and local category

Our genetic analysis of intra-named type variability confirmed the existence of true-to-type cultivars as we found, for some named types such as the elite alkak, a 100% genetic identity across the 18 nuclear and chloroplastic loci. Nevertheless, we also pointed out the lack of genetic uniformity within other named types. Previous studies in date palms had already noted those intra-varietal variations, for instance, for the bint aisha type sampled in different localities in Egypt (El-Assar, Krueger, Devanand, & Chao, 2005, p. 606), for other named types in Libya (Racchi et al., 2013), and for samples from different countries or different regions (Chaluvadi et al., 2019; Khanamm, Sham, Bennetzen, & Aly, 2012). It has often been interpreted as resulting from somatic or somaclonal mutations (Abou Gabal et al., 2006; Devanand & Chao, 2003; Elhoumaizi, Devanand, Fang, & Chao, 2006; Gurevich, Lavi, & Cohen, 2005). Indeed, although offshoot propagation is alleged to be a true-to-type technique (Jain, 2012), somatic mutations can accumulate through generations of offshoot propagation. This has also been demonstrated in other crops, such as grape (Moncada, Pelsy, Merdinoglu, & Hinrichsen, 2007), cherry (Jarni, Jakše, & Brus, 2014), or bracteatus pineapple (Chen et al., 2019). Further, when propagated through tissue culture, cultivars may accumulate somaclonal variation (El Hadrami, Daayf, Elshibli, Lain, & El Hadrami, 2011; e.g., Medjool cultivar, Elhoumaizi et al., 2006).

Here, we acknowledge that somatic mutations can indeed explain some variations. As a matter of fact, we interpreted slight genetic dissimilarity among sacidi accessions as the result of somatic mutations, if not genotyping errors. Nevertheless, we also substantiate that the high genetic dissimilarity within some named types cannot solely reflect the existence of somatic mutations. Instead, it is the result of a cultivation practice that we proposed before, that is, the incorporation of new clonal lines of seedlings under an existing name (Battesti et al., 2018). In this study, we further substantiate this statement, using a larger number of named types and, for each, more samples. We also highlight that a significant number of named types, beyond the very inclusive úšik and males, are neither true-to-type cultivars nor even ethnovarieties, but of the "local category" order. This peculiar cultivation practice we observe in Siwa could also exist in other palm groves and explain previously described cases of intra-varietal genetic variation, for instance, for Mediool/maihūl, the famous Moroccan variety, which is not a "genetically uniform" clone (Elhoumaizi et al., 2006, p. 403).

The prominence and the consequences of sexual reproduction in clonal crops have often been underestimated (McKey, Elias, Pujol, & Duputié, 2012). A recent study demonstrated the occurrence of numerous recombination events in the history of *bracteatus* pineapple cultivars (Chen et al., 2019). Our study on date palms in Siwa constitutes an additional example where cultivation techniques do not silence sexual reproduction, but rather integrate it.

4.1.2 | Determining the number of named types

Surveying the precise number of named types that refer to distinct local date palms in an oasis is an already complex operation, as in Siwa (Battesti, 2013) where given lists of named types can refer to varying degrees of inclusiveness (in no hierarchical order of exclusive taxa, unlike what Brent Berlin's ethnobiological theory of taxonomic categories implies: Berlin, Breedlove, & Raven, 1973; Berlin, Breedlove, & Raven, 1974). However, in a system with cultivation methods based on massive vegetative reproduction, the identification of the accurate number of named types should have been sufficient to correctly estimate the number of genotypes. Until now, therefore, and at best, the overestimation of the agrobiodiversity of the date palm at the regional level had been considered, taking into account the phenomenon of synonymy (a cultivar takes another name by changing oasis), somewhat offset by homonymy (the same name is used in different oases to designate a different cultivar) (Battesti, 2013; Battesti et al., 2018). In a single oasis, Siwa, one of the difficulties of the field survey resides in massive local synonymy, including for plant names and in particular for date palm varieties, as already mentioned (Battesti, 2013; Battesti et al., 2018). The first hypothesis addressing such a synonymy is that a landlocked Berberspeaking community should promote its export products by adding Arabic trade names. Another explanation is the co-presence on the same territory of Arabic-speaking minorities (sedentary Bedouins, especially Awlad 'Alī, Battesti et al., 2018) who use these Arabic

olutionary Applicatior

1831

names; for example, rather than the names tasutet/ alkak/ úšik, they will systematically use (or even only know) the names sacidi/ freḥī/ azzawī to denote the same palms. Besides, we observed that local practices of categorization and integration of seedlings can lead, as explained above, to a massive phenomenon of underestimation of agrobiodiversity for an uninitiated external observer and all assessments have stumbled over this obstacle (even the recent *Atlas of date palm in Egypt*, El-Sharabasy & Rizk, 2019).

In Siwa, our ethnobotanical survey revealed the existence of 15 to 20 named types (Battesti, 2013; Battesti et al., 2018). The exact number is difficult to pinpoint as the field survey reveals that farmers offer local, more or less shared, quality distinctions, even for dates that we depicted as true-to-type cultivars (alkak and tattat, for example). Therein, a higher alkak is called "alkak n amles," meaning smooth or wrinkle-free alkak dates, and a lower alkak with smaller dates, and three times cheaper than the upper one, is called "alkak nifuɣen."

Fifteen to 20 named types in Siwa is not a lot compared to the number of named types described in other oases. Assessing the agrobiodiversity of date palm is a difficult exercise and carried out using noncomparable competing methodologies (Jaradat, 2016). As a result, it is difficult to establish the terms of comparison of agrobiodiversity between oases. We can provide some comparative data. For instance, in the Jerid region of Tunisia (about twice the area of old palm groves compared to Siwa), there is a collective collection of more than 220 varieties (Battesti, 2015; Rhouma, 2005, 1994); some of them may very well be ethnovarieties or local categories, but this hypothesis still has to be checked in situ. Smaller oases have about the equivalent number of named types: 18 in Sokna (al-Jufra, Libya) for a cultivated area half as small as Siwa (Racchi et al., 2013), 18 in Kidal (Northern Mali) but for only 4,000 date palms (Babahani, Togo, & Hannachi, 2012), and 22 in el-Guettar (Tunisia) for only 3,000 date palms (Ben Salah, 2012). Hence, we could believe that the agrobiodiversity is relatively low in Siwa, if considering a conventional system where named types are thought to be genotypes. Nevertheless, with this combined ethnobotanic/genetic approach, we showed that this assumption is wrong, and that, despite a low number of named types compared to other oases, the number of genotypes in Siwa is high and so is the overall diversity.

4.1.3 | Etic versus. emic categorizations

Although we confirm the validity of the notions "cultivar," "ethnovariety," and "local category," we also underline their limitations: They are hardly relevant for the farmers who perform these practices. Two main difficulties arise when assessing local date palm agrobiodiversity. On the one hand, as we demonstrate here, named types are not necessarily genetically uniform contrarily to previous expectations. On the other hand, this explains the first point, the local ways of conceiving this living material and its qualities, of categorizing it (by form) does not quite match with biologists' ways of Evolutionary Applications

conceiving it and categorizing it (by genotype) (Battesti, 2013). This difficulty is a classic conflict for anthropologists, also known as a disparity of etic versus. emic categorizations (Olivier de Sardan, 1998). Deeply characteristic of human societies, categorization processes are also at the heart of both mundane and scientific thoughts and practices. Naturally, our aim is not to use our paradigm (genetics) to try to evaluate the paradigm of indigenous local knowledge (Roué & Nakashima, 2018), but to translate the latter: For social sciences, there is no such thing as one science but several incommensurable sciences, and multiple modes of existence coexist responding to various forms of veridiction (Latour, 2013). In the emic version (the local point of view), the differentiation between cultivars/ethnovarieties (which farmers assimilate) and local categories is clearly thought out. However, it is not so clearly expressed: Farmers can list all named types at the same level even if they do not refer to the same object classes. It is worth bearing in mind that for local farmers, reproducing by offshoot is the rule. Naming/identifying a seedling date palm after a known cultivar (ethnovariety process) is a possible (and appropriate) practice but of an exceptional occurrence on a human life scale. Hence, the difficulty for local farmers to know whether, for instance, all the úšik nigbel are cultivars (which they tend to present as such) or ethnovarieties. Although they do not remember seeing an úšik n gubel coming from a seed, this has apparently been the case, perhaps several decades or generations ago (a date palm easily outlives a human being). The question is of little relevance to them, since the palm trees in guestion behave and have/produce the same form. But, the other process, categorizing a date palm from a seedling, with reddish/dark dates for instance, as having a valuable production and naming/qualifying it, as úšik ezzuway for instance, is a more common experience (local category process). Hence, for local categories, we have to reverse the point of view. For example, some date palms do not bear reddish/dark dates because they belong to the variety úšik ezzuway or zuway, but the fact that their dates are reddish/dark qualifies them as úšik ezzuway or zuway. As scientists, embedded in our etic point of view, the difference between ethnovarieties and local categories may seem thin as both result in genetically unrelated individuals (with a few clones for the former if sampling is sufficient), hence the necessity to consider cultivation practices and local knowledge. Indeed, to distinguish between what can be objectified as an ethnovariety or a local category in our samples is not easy. A clear choice for cultivar true-to-type can be made. Another clear choice is possible for an ethnovariety in the case of x clones plus one or two outsiders (possibly also clones, we did not face the case). When all individuals are different from each other, there is a greater chance of having a local category (to be confirmed by the way farmers talk about it), especially when there is a minimum local consensus. Assessing this consensus is obviously difficult, since no one in the community will use our etic way of thinking about the diversity by cultivar/ethnovariety/local category. Informants just state it as "this date palm, it is an xxxx" [a named type]. Even more complex is the case of the rare ethnovariety, which is little known, but real; so few individuals are sampled that there may not be any clones in the sample.

It is therefore preferable to consider the distance between the ethnovariety and the local category as a continuum (Figure 5). Indeed, among the 18 named types we analyzed here, we found a gradient of intra-cultivar relatedness: Some named types corresponded actually to unique genotypes while some did not, as evidenced in our previous study (Battesti et al., 2018). It is worth noting that an expanded sampling could show that what we believe today to be a true-to-type cultivar is in fact an ethnovariety, by discovering a new line of clone under the same name. Further, it could allow to identify lines of clones for the inconclusive alkak wen žemb, lekrawmet, amenzu, or yrom şazid to confirm them as ethnovarieties. To formally confirm that a given name is either a true-to-type cultivar, an ethnovariety, or a local category, it would require that the 200,000 to 250,000 date palms of Siwa to be all genotyped. This is obviously not conceivable.

4.2 Usefulness of the folk categorization

What are the explanations for such a complex local system for categorizing date palms in Siwa? They might be both cognitive and agricultural. First, all "classifications are functionally linked to the effective storage, retrieval and communication of large quantities of information relating to the animal and plant worlds" (Meilleur, 1987, p. 9-10) and must be easily mobilized to guide action and communicate (knowledge, experience, etc.). This system must therefore be shared. The utilitarian nature of folk biological classifications had already been discussed by Eugene Hunn (1982). Date palm cultivation in Siwa is largely dominated by a few "elite" types (probably for centuries, an integration into the Saharan trading network, Battesti, 2018, 2013). Here, we found that they are apparently true-to-type cultivars, despite their prevalence and therefore the mechanical possibility of becoming an ethnovariety. The ethnovariety and local category system make it possible to "put in order" the profusion of all the other date palms, less commercially valued, while not multiplying the denominations for the same characteristics.

Secondly, a peculiar system allows for a peculiar action on the world, in this case, a fairly flexible management of agrobiodiversity. McKey et al. (2010) consider that cultivation of clonally propagated plants represents a singular system that has to date been largely neglected and that a key component of strategies for preserving the adaptive potential of clonal crops is the maintenance of mixed clonal/ sexual systems. Their model is the cassava (Manihot esculenta Crantz), a eudicot grown as an annual plant in tropical and subtropical regions. To date, cassava is the only clonal crop for which in-depth information exists on how mixed clonal/sexual systems work (ibid.). We propose here another crop model, quite different as the date palm is a perennial plant that lives decades or even over a century (Chao & Krueger, 2007). This critically impacts farming practices, especially those inherent to propagation (by seed or offshoot, sexual or clonal). However, it is very likely that maintenance of a mixed clonal/sexual system is a local key strategy for managing and preserving an agrobiodiversity of

FIGURE 5 Converging local categorization of date palms in Siwa (*emic*) and genetic categorizations (*etic*) with the distribution of the named types identified by Isiwan. For genetic analyses, there is a continuum between ethnovariety and local category, while for local farmers, the rationale is quite different (genotype vs. phenotype approaches). For farmers, ethnovarieties imply the idea of identity, when local categories refer to the idea of a qualification (to qualify a date palm of ...). Nevertheless, cultivars, ethnovarieties, and local categories are listed by Isiwan as if they were equivalent

date palms in Siwa. And this is made possible for Siwa farmers because they developed a classification system that enables them to do so.

How does it usually work—or how do we think it works? Usually, farmers have important stock of cultivars (true-to-type) reproduced vegetatively, and a possible gene pool of seedlings, with their own possible use (fodder, handicraft, etc.)—named depending on places *khalt, sheken, degla* (Battesti, 2005), *rtob* (Ben Salah, 2012), *saïr* (Peyron, 2000), *sayer* (Naseef, 1995), *qush* (Popenoe, 1913), *dabino* (Zango et al., 2016), etc., or *úšik* in Siwa. From this stock is sometimes drawn on occasion a new seedling then socially recognized by the granting of a new name and then vegetatively reproduced: It enhances the initial collection.

How mixed clonal/sexual systems work in Siwa? We have demonstrated that, there, the local categorization system including ethnovarieties and local categories—part of the palm domestication at ethnographic scale—allows an even more flexible management of agrobiodiversity and gene flow to the cultivated pool, as any new seedling integrated into the procession of cultivated date palms is likely to be classified within a pre-existing named type, although not sharing the same genetic heritage in common (genotype), but sharing, from a local point of view, the same form or the same characteristics (phenotype).

4.3 | A unique and high genetic diversity in Siwa date palms

Siwa date palms form a partially distinct cluster from western accessions, rather than a subset of the diversity found in North Africa as it might have been expected. Some alleles are found uniquely in the region. The level of allelic richness in Siwa (a tiny region) is strikingly as high as that found in all eastern accessions, originating from a large geographic area from the Near East through the Arabian Peninsula and as far as Pakistan. We note that Libyan cultivars also belong to what we can call a third genetic cluster of modern date palm germplasm. This uniqueness of date palms from the Libyan Desert has never been reported before, although a previous study mentioned that samples from Libya and Tunisia may hold a higher diversity (Mathew et al., 2015). In fact, very few studies have compared accessions from Siwa with other date palms. Gros-Balthazard et al. (2017) mentioned that the cultivar "siwi" from Siwa (here called sacidi) did not cluster with the Middle Eastern accessions nor with the North African accessions, but it was interpreted as a hybrid origin. Identically, it does not cluster with other Egyptian accessions in a study based on AFLP (EI-Assar et al., 2005). A seed morphometrics 'II FY-

Evolutionary Applications

analysis shows that it clusters with date palms of mixed origins (Terral et al., 2012). Nevertheless, both a limited sampling in Siwa and an incomprehension/ignorance of the cultivation practice had hampered those previous researches to pinpoint the singularity and high diversity of Siwa date palms. We note that although there are existing studies based on microsatellite data that provide diversity estimates for date palm populations from various regions (i.e., Chaluvadi et al., 2019; Zehdi-Azouzi et al., 2015), the use of distinct loci and/or different sample size prevent comparisons between our results and that of these studies.

Three nonmutually excluding hypotheses could explain the high genetic diversity observed in Siwa date palms. First, a highly diverse but vet unidentified source of diversity may have contributed to date palms in the Libyan Desert, thus making them both highly diverse and unique, compared to other regions (see Section 4.4). Second, the cultivation practices that we here describe may have maintained/promoted this high diversity. Indeed, a sole clonal propagation leads to a loss of diversity (McKey et al., 2010). In Siwa, we found a complex system where what we thought were cultivars (clones) are in fact ethnovarieties or local categories, which in turn account for a higher diversity than expected at first sight. It is thus possible that in Siwa, more than in other oases, sexual reproduction being more common, there is a more limited loss of diversity through time. In addition, the position of Siwa, at the crossroads between western Africa and the Middle East, promotes the creation of novel hybrids, and a particularly high outcrossing rate, where many individuals contributing to the next generations may have allowed the retention of this peculiar diversity. These hypothesis remains to be tested by ethnographic survey in other oases in order to test whether sexual reproduction is more prevalent in Siwa than elsewhere. This leads us to the third hypothesis: The high diversity found in Siwa could reflect, rather than a reality, a sampling bias. Indeed, our sampling, considering practices and knowledge of farmers, may have led us to sample an appropriate representation of the existing diversity of Siwa. On the opposite, the non-Siwa date palms included here have been sampled without such an ethnobotanical survey and may in turn only be a poor representation of the actual diversity. Hence, if such a sampling methodology were applied everywhere, we may very well discover more diversity elsewhere too.

We identified that date palms in the current oasis of Siwa and in the ancient abandoned palm groves in the surrounding desert constitute two subpopulations. Changes in allele frequencies in the uncultivated palms may have been driven by a relaxation of human-induced selective constraints, natural selection, or genetic drift, following the abandonment of these groves. Additionally, while we identified potential gene flow from eastern accessions at both chloroplastic and nuclear level in the date palms from the current oasis, accessions from the abandoned palm groves may have received less diversity from this population. Uncultivated palms from the desert share more ancestry with *P. theophrasti* than both western and Siwa Oasis date palms. Locally, these desert date palms are considered as úšik but are also specifically called igizzã (sing. agzzu). Our ethnographic survey revealed that they do not seem to be used by the farmers as a reservoir of diversity. Some of these abandoned oases could nevertheless constitute casual date harvest sites, and hence, seeds from the harvested fruits could potentially end up as úšik in the cultivated palm grove. This could explain the intermediate genetic profiles of úšik #1 and #2: Their diversity seems in between that found in the current oasis and the abandoned oases.

Siwa date palm origins are unknown, but their presence in Siwa dates back at least to the 5th century (mentioned by Hellanicus of Mytilene, see above); the oasis being then an independent state related to the Libyan world, well established as an essential trade and religious hub with Libyan, Egyptian, and Hellenistic influences (Kuhlmann, 1999). Declining or abandoned at the end of the first millennium, the oasis was probably recolonized in the 11th or 12th century (a priori by Amazighs from Libya, then Arabs, see Battesti, 2013), but we do not know if this was done by conserving the original stock of date palm trees or by introducing new plants/cultivars, or both. In the present study, we found that the date palm population of Siwa is unique. As deep as we can go back in Siwa's history (the realm of "two deserts"-eastern and western deserts, from a Siwa-centered point of view-Kuhlmann, 2013), opportunities for a melting pot of genetic richness of date palm were there. Nevertheless, connections are not enough. Assessment would have to be done on the dispersion flows of the domestic date palm between oases, and on the entry of genes into Siwa stock, intentionally-by offshoots?-or unintentionally-by seed? The "stepping stones" (connectivity from oasis to oasis) of the landscape ecology (Burel & Baudry, 1999) and the "functional connectivity" concept (Battesti, 2018) seem appropriate. The genetic makeup in Siwa, like that of other North African populations, may originate from a mix of Middle Eastern date palms and P. theophrasti; an unknown ancestral gene pool may also be involved (see below).

4.4 | Revising the history of date palms origins and diffusion

Using 17 nuclear microsatellites and one chloroplastic minisatellite, we detected the previously described differentiation between date palms from North Africa (the so-called western population) and those from the Middle East and Pakistan (the so-called eastern population). Our results also corroborate the existence of gene flows between these two clusters, mostly from east to west (Gros-Balthazard et al., 2017; Hazzouri et al., 2015; Zehdi-Azouzi et al., 2015).

4.4.1 | The contribution of *P. theophrasti* to North African date palms: insights from Siwa date palms

Date palms were domesticated at least in the Persian Gulf region, followed by diffusion to North Africa (for review, Gros-Balthazard et al., 2018). A recent study, based on whole-genome resequencing data, indicated that North African date palms have been introgressed by the Aegean Phoenix theophrasti, and today, about 5%-18% of their genome originates from this wild relative or a P. theophrasti-like population (Flowers et al., 2019). Here, we also identified potential evidence of this introgression. Indeed, the Bayesian clustering identified shared alleles between these two populations, and the differentiation between western date palms and P. theophrasti is reduced compared to that between eastern date palm and this wild relative. We, however, note that none of the 121 North African and 156 Siwa date palms display the P. theophrasti unique chlorotype (five repeats of the dodecanucleotide minisatellite, Pintaud et al., 2013). This corroborates previous results showing that plastid and mitochondrial haplotypes characterizing P. theophrasti are absent in the 25 sequenced North African date palms (Flowers et al., 2019). This has been interpreted as an asymmetry in the direction of the interspecific cross, where gene flows from P. theophrasti were pollen-mediated (ibid.), but the possibility of a plastome-genome incompatibility (Greiner, Sobanski, & Bock, 2015) cannot be ruled out. Going beyond these two occidental and oriental chlorotypes, Mohamoud et al. (2019) identified four chlorotypes, using genome-wide genotyping data. Our microsatellite data do not allow us to know which of these four chlorotypes are displayed by our samples, but this represents an exciting direction for future genomic studies.

Although a major event in the diffusion and diversification of cultivated date palms to North Africa, the introgressive event by *P. theophrasti* remains puzzling, especially in terms of localization (Flowers et al., 2019). Indeed, today, this species is not distributed in North Africa, but is found in the Aegean region, mostly in Crete (Barrow, 1998), but also in coastal Turkey (for review, Boydak, 2019). One hypothesis explaining the introgression by *P. theophrasti* is that it had a much wider distribution in the past, encompassing North Africa and/or the Levantine region (Flowers et al., 2019). In the literature, authors consider it is a tertiary relict species (Vardareli, Doğaroğlu, Doğaç, Taşkın, & Göçmen Taşkın, 2019). Here, we indeed found a high inbreeding coefficient that could reflect a severe population bottleneck due to habitat loss. Nevertheless, we lack positive evidence for the presence of the Cretan date palm outside of its current distribution area and this hypothesis remains unconfirmed.

Another hypothesis explaining this introgression is historical. In this study, we found that date palms from the region of Siwa share on average more alleles with *P. theophrasti* than other western varieties. This could indicate that North African date palms were introgressed by *P. theophrasti* or a *P. theophrasti*-like population in this peculiar region. As a matter of fact, tight links between Siwa and Crete did exist. Archeological and textual evidences prove that the Minoan culture that had developed in Crete interacted with the mainland Eastern Mediterranean, including New Kingdom Egypt, most intensively in the second half of the second millennium BCE (Bietak, 2005; Bietak, Maritanos, Palivou, & Brysbaert, 2007). At least from the 5th century BCE onwards, Siwa was a large hub, caught between influences exerted by Pharaonic and then Graeco-Roman Egypt on the one hand, and the Greek colonies of Cyrenaica on the other hand (Rieger, 2017, p. 52; Struffolino, 2012). Many Greek delegations and olutionary Applicatio

merchants visited Siwa to present their offerings to the patron god (Colin, 1997; Kuhlmann, 2013), and Greek or even Cretan workers employed in the construction of the temples have left engraved inscriptions of their passage (Aldumairy, 2005; Kuhlmann, 2013). Those persistent connections could have set the opportunity of plant material exchanges, including of *Phoenix*.

We note that date palms from the abandoned oases of Siwa show an even closer affinity to *P. theophrasti* than do the palms from the current oasis. One speculative hypothesis for this pattern is that those palm groves were abandoned shortly after introgression by the Cretan date palm, and their genetic makeup may have evolved independently from other date palm populations, while date palms in the current oasis could have had their *P. theophrasti* ancestry diluted by gene flows from other populations, especially the eastern ones.

4.4.2 | The Siwa region at the diffusion crossroads of the domestic date palm?

Siwa was in early contact with Egypt and the Libyan Sahara, a position that was essential for the diffusion of the date palm. In Egypt, unequivocal evidence for the economic and cultural importance of dates and for the local cultivation of the date palm for its fruits begins with the New Kingdom in the mid-2nd millennium BCE (Tengberg & Newton, 2016). However, there is now earlier evidence for the presence of date palm products in Egypt, but whether the dates were produced locally, in the Nile delta, or imported remains unknown. For instance, administrative texts document that two regions (nomes) located on the Mediterranean coast provided dates, of unknown origin, to workers under the reign of Khufu (around 2,600 BCE, Tallet, 2017), while a very small amount of date palm remains were found at Giza (2,700–2,100 BCE) (Malleson, 2016; Malleson & Miracle, 2018) and at the site where the texts were found (Wadi al-Jarf, a Red Sea harbor site, Newton, unpublished data).

The extension of the route leading west from Siwa, via Jaghbūb, Awjila, to Fezzan, and plausibly onwards, appears to date to the late second or early first millennium BCE (Mattingly, 2017, p. 8). In the Fezzan (Libya), the Garamantes developed into a Central Saharan state (ibid. p. 15) and were involved in separate bilateral trading arrangements with neighboring states and peoples to the north and south (ibid. p. 19). Late pastoral period sites in the Fezzan do suggest some contact with agriculturalists: Date stones were recovered dating to the end of the second millennium BCE, but could have been "exotic" imports from Egypt. From the beginning of the first millennium BCE, the occupants of Zinkekra were cultivating a range of crops characteristic of Near Eastern, Mediterranean, and Egyptian farmers, based on emmer wheat, barley, grape, fig, and date (Pelling, 2005, p. 401). These are some of the earliest evidence for oasis agriculture in North Africa (Van der, Veen, & Westley, 2010). Siwa, the realm of the "two deserts" (Kuhlmann, 2013), could have been in the first millennium an important, even unavoidable node in the date palm exchange network between Egypt and Libya.

4.4.3 | A missing contributor to the modern date palm genetic makeup?

North African date palms display a higher diversity than Middle Eastern ones (Gros-Balthazard et al., 2017; Hazzouri et al., 2015). Flowers et al. (2019) showed that the more the genomic regions are introgressed by *P. theophrasti* or a *P. theophrasti*-like population, the higher their diversity is, concluding that the excess of diversity found in North African date palms can be explained by the introgressive event(s) by this wild relative. Our results corroborate these findings, as we found that the fraction of alleles uniquely found in North Africa is reduced when *P. theophrasti* is included in the analysis (Figure S4).

Nevertheless, both Flowers et al. (2019) and our data indicate that there could still be an unknown population that contributed to the modern date palm germplasm. Indeed, in genomic regions with no or limited P. theophrasti introgression, the diversity in North African date palms remains higher than that in Middle Eastern date palms (Flowers et al., 2019). Further, of the two main chlorotypes described in date palms (Pintaud et al., 2013), we ignore the origins of the so-called occidental one, prevalent in western date palms. Indeed, the few relictual wild date palm populations (in Oman) bear the so-called oriental chlorotype (Gros-Balthazard et al., 2017), and P. theophrasti an even more divergent type (Pintaud et al., 2013). Here, we could also identify diversity that is unique to the North African date palms, especially in Siwa. The origins of this unique genetic makeup are unknown. It could, like other North African date palms, derive from a mix between Middle Eastern date palms and P. theophrasti. Indeed, demographic events, such as population bottlenecks, or selection can lead to drastic changes in allelic frequencies, while mutations may introduce new alleles. Another hypothesis, reinforced by results obtained at the chloroplastic loci, is a contribution from not only Middle Eastern date palms and P. theophrasti, but also from a yet unidentified North African Phoenix population.

So far, there is no evidence of date palms or other *Phoenix* populations in North Africa before the establishment of oasis agriculture. Predomestication *Phoenix* remains attributed to *P. dactylifera* have only been found in the Levant and in Iraq (Henry, Brooks, & Piperno, 2011; Liphschitz & Nadel, 1997; Solecki & Leroi-Gourhan, 1961). In contemporary times, wild date palm populations are exclusively known in the mountainous regions of Oman (Gros-Balthazard et al., 2017). The natural distribution of *P. dactylifera* (before its domestication and diffusion) is unknown (Barrow, 1998). It likely covered at least the Middle East and may have shrunk, in connection to climate change (Collins et al., 2017). In Egypt, it is possible that the date palm was growing wild or that it was grown for ornamental purposes (more precisely, not mainly for its fruit), perhaps from the 4th until the mid-2nd millennium BCE.

Siwa Oasis and the Libyan region in general could be a region of prime importance for the understanding of date palm origins in North Africa and the history of gene flows with the Cretan date palm *Phoenix theophrasti*. More precisely, not only date palms from the current oasis could shed light on the history of this species, but also the uncultivated palms from the abandoned oases. So far, research has focused mainly on cultivated germplasm, neglecting uncultivated date palms, even if local oasis communities have a use for them. Here, we demonstrate that they can be of interest as, not only they can inform on past history, but they may represent untapped reservoir of diversity for future breeding programs.

4.5 | Articulating the scales of ethnography and domestication over the long term

This study demonstrates that the combination of observation angles and methodologies on the cultivation of a crop, in particular perennial with a clonal/sexual reproduction, is essential. Ethnobotany hypothesized agricultural and classification practices with considerable effects on agrobiodiversity, made possible by local ways of categorizing living organisms (that result in the de facto presence of cultivars, ethnovarieties, and local categories of date palms). Nevertheless, their occurrences are rare events (on the scale of one generation of farmers) and only molecular genetic analyses could verify those hypotheses. The other way around, geneticists assessing agrobiodiversity de facto consider each named type to be a cultivar, which only a long/careful ethnography could hypothesize to be, at least partially, untrue. Without the ethnobotanists, geneticists, by collecting a single sample per named type as they consider that they are cultivars, miss a huge amount of diversity and ways to understand it. The crucial step of sampling strategy cannot also be effectively implemented without a well-established understanding of local ways of categorizing (naming) the material being studied through long-term ethnobotanical fieldwork.

In this study of the oasis of Siwa, we thus demonstrated that agrobiodiversity can be studied neither by a single genetic approach, nor by a single ethnographic approach. The combination of the two observation scales is necessary to uncover the phenomena and data necessary to test hypotheses. Indeed, these dialogues and close collaborations have resulted here in the discovery of hidden date palm diversity. Applying such an integrated approach to other oases may bring to light concealed date palm diversity elsewhere. Date palm diversity, whether wild, cultivated, or abandoned, thus still remains largely uncovered. Yet, having the right picture of the existing date palm diversity is crucial to the understanding of its origins and critical when it comes to germplasm conservation.

Finally, this interdisciplinary framework could be useful not only to date palm scientists, but also to scholars studying agrobiodiversity and its evolution in many different plant contexts.

ACKNOWLEDGEMENTS

The present study was funded by BioDivMeX program (Working-Group Insularities)/MISTRALS, Mosaïque program (GDR 3355 INEE CNRS), and a grant from the New York University Abu Dhabi Research Institute on Biodiversity Genomics to Michael Purugganan. The authors are very grateful to the countless farmers of Siwa Oasis for having taken on such countless questions and for their unfailing hospitality.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

M.G.-B. and V.B. designed the research and wrote the paper. V.B. performed the ethnographic survey and studied the folk botanical categorization. M.G.-B. performed genetic data analysis and, with V.B., interpreted the results. S.I., L.P., F.A., O.Z., S.Z., S.M., S.A.N., C.N., and J.-F.T. contributed to data analysis. V.B., M.G.-B., S.I., and C.N. collected the material.

DATA AVAILABILITY STATEMENT

Genotyping data generated for this study are available in Table S2.

ORCID

Muriel Gros-Balthazard b https://orcid.org/0000-0002-2587-3946 Vincent Battesti https://orcid.org/0000-0002-5793-1098 Laure Paradis https://orcid.org/0000-0002-2159-291X Frédérique Aberlenc b https://orcid.org/0000-0003-1866-6807 Oumarou Zango b https://orcid.org/0000-0003-1900-6827 Salwa Zehdi-Azouzi https://orcid.org/0000-0003-1710-0617 Souhila Moussouni b https://orcid.org/0000-0002-9989-8468 Summar Abbas Naqvi b https://orcid.org/0000-0001-8186-9055 Claire Newton b https://orcid.org/0000-0003-3791-3906 Jean-Frédéric Terral b https://orcid.org/0000-0003-1921-2161

REFERENCES

- Abd El-Azeem, R. M., Hashem, M. H., & Hemeida, A. A. (2011). Identification and Genetic Similarity Analysis of Date Palm (*Phoenix dactylifera* L.) Collected from Different Regions in Siwa Oasis using Morphologically Traits and Molecular Markers *Egyptian Journal of Genetics and Cytology*, 40, 281–300. https://doi.org/10.21608/ ejgc.2011.10793 https://doi.org/10.21608/ejgc.2011.10793
- Aberlenc-Bertossi, F., Castillo, K., Tranchant-Dubreuil, C., Chérif, E., Ballardini, M., Abdoulkader, S., ... Pintaud, J.-C. (2014). In Silico Mining of Microsatellites in Coding Sequences of the Date Palm (Arecaceae) Genome, Characterization, and Transferability. *Applications in Plant Sciences*, 2, 1,300,058. https://doi.org/10.3732/apps.1300058
- Abou Gabal, A. A., Abedel Aziz, A. A., Hardash, M. M., & El-Wakil, H. F. (2006). Genetic diversity among seven date palm landraces in Siwa oasis. Egyptian Journal of Genetics and Cytology, 35, 117–128.
- Adamack, A. T., & Gruber, B. (2014). PopGenReport: Simplifying basic population genetic analyses in R. Methods in Ecology and Evolution, 5, 384–387. https://doi.org/10.1111/2041-210X.12158
- Aldumairy, A. A. (2005). Siwa Past and Present. Alexandria, Egypt: Yasso.
- Babahani, S., Togo, A., & Hannachi, S. (2012). Étude sur le patrimoine phoenicicole de Kidal au nord du Mali. Fruits, 67, 77–86. https://doi. org/10.1051/fruits/2011071
- Ballardini, M., Mercuri, A., Littardi, C., Abbas, S., Couderc, M., Ludeña, B., & Pintaud, J.-C. (2013). The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in *Phoenix L.* (Arecaceae). *ZooKeys*, 365, 71–82. https://doi.org/10.3897/zookeys.365.5725
- Barrow, S. (1998). A monograph of *Phoenix* L. (Palmae: Coryphoideae). *Kew Bulletin*, 53, 513–575. https://doi.org/10.2307/4110478

- Battesti, V. (2004). Odeur sui generis, Le subterfuge dans la domestication du palmier dattier (Tassili n'Ajjer, Algérie). Anthropozoologica, 39, 301–309. http://hal.archives-ouvertes.fr/halshs-00004025
- Battesti, V. (2005). Jardins au désert, Évolution des pratiques et savoirs oasiens, Jerid Tunisien. Paris: Éditions IRD. http://hal.archives-ouver tes.fr/halshs-00004025
- Battesti, V. (2013). L'agrobiodiversité du dattier (Phoenix dactylifera L.) dans l'oasis de Siwa (Égypte): Entre ce qui se dit, s'écrit et s'oublie. Revue D'ethnoécologie 4, 1-64. https://doi.org/10.4000/ethnoecolo gie.1538
- Battesti, V. (2015). Resources and appropriations: Back to the Jerid Oases (Tunisia) after the Revolution. *Études Rurales*, 2013(2), 153–175. https ://doi.org/10.4000/etudesrurales.9954
- Battesti, V. (2018). Les possibilités d'une île, Insularités oasiennes au Sahara et genèse des oasis. In G. Tallet, & T. Sauzeau (Eds.), Mer et désert de l'Antiquité à nos jours, Approches croisées, Histoire (pp. 105– 144). Rennes: Presses universitaires de Rennes.
- Battesti, V., Gros-Balthazard, M., Ogéron, C., Ivorra, S., Terral, J.-F., & Newton, C. (2018). Date palm agrobiodiversity (*Phoenix dactylifera* L.) in Siwa oasis, Egypt: Combining ethnography, morphometry, and genetics. *Human Ecology*, 46, 529–546. https://doi.org/10.1007/ s10745-018-0006-y
- Ben Salah, M. (2012). Rapport d'expertise technique sur la biodiversité oasienne en Tunisie. RADDO (Réseau associatif pour le développement durable des oasis); ASOC (Association de sauvegarde des oasis de Chenini).
- Berlin, B., Breedlove, D. E., & Raven, P. H. (1973). General Principles of Classification and Nomenclature in Folk Biology. *American Anthropologist New Series*, 75, 214–242. https://doi. org/10.2307/672350
- Berlin, B., Breedlove, D. E., & Raven, P. H. (1974). Principles of Tzeltal plant classification; an introduction to the botanical ethnography of a Mayanspeaking people of highland Chiapas, Language, thought, and culture. New York, New York: Academic Press.
- Bietak, M. (2005). The Thutmose Stronghold of Perunefer. *Egyptian* Archaeology, 26, 13–17.
- Bietak, M., Maritanos, N., Palivou, C., & Brysbaert, A. (2007). Taureador Scenes in Tell El-Dab'a (Avaris) and Knossos, Untersuchungen der Zweigstelle Kairo des Österreichischen Archäologischen Institutes 27, Denkschriften der Gesamtakademie. Österreichische Akademie der Wissenschaften, Wien.
- Billotte, N., Marseillac, N., Brottier, P., Noyer, J.-L.-L., Jacquemoud-Collet, J.-P.-P., Moreau, C., ... Risterucci, A.-M. (2004). Nuclear microsatellite markers for the date palm (*Phoenix dactylifera L.*): Characterization and utility across the genus *Phoenix* and in other palm genera. *Molecular Ecology Notes*, *4*, 256–258. https://doi. org/10.1111/j.1471.8286.2004.00634.x
- Boydak, M. (2019). A new subspecies of Phoenix theophrasti Greuter (Phoenix theophrasti Greuter subsp. golkoyana Boydak) from Turkey. Forestist, 69, 133–144. https://doi.org/10.26650/fores tist.2019.19016
- Burel, F., & Baudry, J. (1999). Écologie du paysage. Concepts, méthodes et applications. Paris: Tec & Doc.
- Chaluvadi, S. R., Young, P., Thompson, K., Bahri, B. A., Gajera, B., Narayanan, S., ... Bennetzen, J. L. (2019). *Phoenix* phylogeny, and analysis of genetic variation in a diverse collection of date palm (*Phoenix dactylifera*) and related species. *Plant Divers*, 41, 330–339. https://doi.org/10.1016/j.pld.2018.11.005
- Chao, C. T., & Krueger, R. R. (2007). The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. HortScience, 42, 1077–1082. https://doi.org/10.21273/HORTSCI.42.5.1077
- Chen, L.-Y., VanBuren, R., Paris, M., Zhou, H., Zhang, X., Wai, C. M., ... Ming, R. (2019). The *bracteatus* pineapple genome and domestication of clonally propagated crops. *Nature Genetics*, *51*, 1549–1558. https ://doi.org/10.1038/s41588-019–0506–8

WII FY Evolutionary Application

- Colin, F. (1997). Ammon, Parammon, Poséidon, Héra et Libye à Siwa. Bulletin De L'institut Français D'archéologie Orientale, 97–108. https:// www.ifao.egnet.net/bifao/097/07/
- Collins, J. A., Prange, M., Caley, T., Gimeno, L., Beckmann, B., Mulitza, S., ... Schefuß, E. (2017). Rapid termination of the African Humid Period triggered by northern high-latitude cooling. *Nature Communications*, 8, https://doi.org/10.1038/s41467-017-01454-y
- de Mendiburu, F. (2015). agricolae: Statistical Procedures for Agricultural Research. Available at https://cran.r-project.org/package=agricolae
- Devanand, P. S., & Chao, C. T. (2003). Genetic variation in "Medjool" and "Deglet Noor" date (Phoenix dactylifera L.) cultivars in California detected by fluorescent-AFLP markers. The Journal of Horticultural Science & Biotechnology, 78, 405–409.
- Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. *Journal of Statistical Software*, 22, 1–20.
- Duemichen, J. (1877). Die Oasen der libyschen Wüste: Ihre alten Namen und ihre Lage, ihre vorzüglichsten Erzeugnisse und die in ihren Tempeln verehrten Gottheiten; nach den Berichten der altägyptischen Denkmäler, Strassburg, Verlag von Karl J. Trübner. http://digi.ub.uniheidelberg.de/ diglit/duemichen1877
- El Hadrami, A., Daayf, F., Elshibli, S., Lain, S. M., & El Hadrami, I. (2011). Somaclonal Variation in Date Palm. In S. M. Jain et al (Eds.), *Date Palm Biotechnology* (pp. 183–203). Dordrecht: Springer B.V. http://doi. org/10.1007/978-94-007-1318-5_9
- El-Assar, A. M., Krueger, R. R., Devanand, P. S., & Chao, C. C. T. (2005). Genetic analysis of Egyptian date (*Phoenix dactylifera* L.) accessions using AFLP markers. *Genetic Resources and Crop Evolution*, 52, 601– 607. https://doi.org/10.1007/s10722-004-0583-z
- Elhoumaizi, M. A., Devanand, P. S., Fang, J., & Chao, C. C. T. (2006). Confirmation of "Medjool" date as a landrace variety through genetic analysis of "Medjool" accessions in Morocco. *Journal of the American Society for Horticultural Science*, 131, 403–407. https://doi. org/10.21273/JASHS.131.3.403
- El-Sharabasy, S. F., & Rizk, R. M. (2019). Atlas of date palm in Egypt. Cairo: Food & Agriculture Org. http://www.fao.org/3/ca5205b/CA520 5B.pdf
- el-Wakil, H. E. M., & Harhash, M. M. (1998). Evaluation of some date palm cultivars grown in Siwa oasis. First International Conference on Date Palms (pp. 583–601). Al-Ain: UAE University.
- Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. *Molecular Ecology*, 14, 2611–2620. https://doi. org/10.1111/j.1365-294X.2005.02553.x
- Fakhry, A. (1990). Siwa Oasis. Cairo: American University in Cairo Press.
- Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. *Genetics*, 164, 1567–1587.
- Flowers, J. M., Hazzouri, K. M., Gros-Balthazard, M., Mo, Z., Koutrumpa, K., Perrakis, A., ... Purugganan, M. D. (2019). Cross-species hybridization and the origin of North African date palms. *Proceedings of the National Academy of Sciences*, 116(5), 1651–1658. https://doi. org/10.1073/pnas.1817453116
- Greiner, S., Sobanski, J., & Bock, R. (2015). Why are most organelle genomes transmitted maternally? *BioEssays*, 37, 80–94. https://doi. org/10.1002/bies.201400110
- Gros-Balthazard, M., Galimberti, M., Kousathanas, A., Newton, C., Ivorra, S., Paradis, L., ... Wegmann, D. (2017). The discovery of wild date palms in Oman reveals a complex domestication history involving Centers in the Middle East and Africa. *Current Biology*, *27*, 2211– 2218. https://doi.org/10.1016/j.cub.2017.06.045
- Gros-Balthazard, M., Hazzouri, K. M., & Flowers, J. M. (2018). Genomic insights into date palm origins. *Genes*, 9, 1–14. https://doi.org/10.3390/ genes9100502
- Gruber, B., & Adamack, A. T. (2015). landgenreport: A new r function to simplify landscape genetic analysis using resistance surface

layers. Molecular Ecology Resources, 15, 1172-1178. https://doi. org/10.1111/1755-0998.12381

- Gurevich, V., Lavi, U., & Cohen, Y. (2005). Genetic variation in date palms propagated from offshoots and tissue culture. *Journal of the American Society for Horticultural Science*, 130, 46–53. https://doi. org/10.21273/JASHS.130.1.46
- Hazzouri, K. M., Flowers, J. M., Visser, H. J., Khierallah, H. S. M. M., Rosas, U., Pham, G. M., ... Purugganan, M. D. (2015). Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. *Nature Communications*, *6*, 8,824. https://doi.org/10.1038/ ncomms9824
- Hemeid, A. A., Sanaa, A. R., & Abd El-Rahman, T. M. (2007). Molecular characterization of different date palm (*Phoenix dactylifera* L.) cultivars grown in Siwa Oasis. *Egyptian Journal of Genetics and Cytology*, 36, 145–162.
- Henderson, A. (1986). A review of pollination studies in the Palmae. Botanical Review, 52, 221–259. https://doi.org/10.1007/BF02860996
- Henderson, S. A., Billotte, N., & Pintaud, J. C. (2006). Genetic isolation of Cape Verde Island Phoenix atlantica (Arecaceae) revealed by microsatellite markers. Conservation Genetics, 7, 213–223. https://doi. org/10.1007/s10592-006-9128-7
- Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). *Proceedings of the National Academy of Sciences*, 108, 486–491. https ://doi.org/10.1073/pnas.1016868108
- Hohler, T. B., & Maspero, G. (1900). *Report on the Oasis of Siva*. Cairo: Waterlow and sons limited.
- Hunn, E. (1982). The utilitarian factor in folk biological classification. American Anthropologist, 84, 830–847. https://doi.org/10.1525/ aa.1982.84.4.02a00070
- Jain, S. M. (2012). Date palm biotechnology: Current status and prospective - an overview. Emirates Journal of Food and Agriculture, 24, 400–407.
- Jaradat, A. A. (2016). Genetic diversity and erosion in plants, Sustainable Development and Biodiversity. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25954-3
- Jarni, K., Jakše, J., & Brus, R. (2014). Vegetative propagation: Linear barriers and somatic mutation affect the genetic structure of a *Prunus* avium L. Stand Forestry, 88, 612–621. https://doi.org/10.1093/fores try/cpv029
- Jombart, T., & Ahmed, I. (2011). adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. *Bioinformatics*, 27, 3070–3071. https ://doi.org/10.1093/bioinformatics/btr521
- Kalinowski, S., Taper, M., & Marshall, T. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. *Molecular Ecology*, 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
- Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. https://doi.org/10.7717/ peerj.281
- Khanamm, S., Sham, A., Bennetzen, J. L., & Aly, M. A. M. (2012). Analysis of molecular marker-based characterization and genetic variation in date palm (Phoenix dactylifera L.). Australian Journal of Crop Science, 6, 1236–1244.
- Kuhlmann, K. P. (1988). Das Ammoneion: Archäologie Geschichte und Kultpraxis des Orakels von Siwa. Mainz am Rhein: P. von Zabern.
- Kuhlmann, K.-P. (1999). Siwa Oasis, Late period and Graeco-Roman sites. In K. A. Bard, & S. B. Shubert (Eds.), *Encyclopedia of the archaeology of ancient Egypt* (pp. 900–907). London and New York, NY: Routledge.
- Kuhlmann, K.-P. (2013). The realm of "two deserts": Siwah Oasis between east and west. In F. Förster, & H. Riemer (Eds.), Desert road archaeology in ancient Egypt and beyond, Africa Praehistorica (pp. 133–166). Köln: Heinrich-Barth-Institut.

- Landsberger, B. (1967). The date palm and its by-products according to the cuneiform sources. *Graz*, *Weidner*, *Archiv Für Orientforschung*, *Beiheft*.
- Laoust, É. (1932). *Siwa: I. Son parler*. Paris: Publications de l'Institut des hautes-études marocaines. Librairie Ernest Leroux.
- Latour, B. (2013). An inquiry into modes of existence: An anthropology of the Moderns (p. 486). Cambridge, MA: Harvard University Press.
- Leclant, J. (1950). "Per Africae Sitientia". Témoignages des sources classiques sur les pistes menant à l'oasis d'Ammon. Bulletin De L'institut Français D'archéologie Orientale, 49, 193–253. https://www.ifao. egnet.net/bifao/049/10/
- Liphschitz, N., & Nadel, D. (1997). Epipalaeolithic (19,000 B.P.) charred wood remains from Ohalo II, Sea of Galilee, Israel. Mitekufat Haeven. *Journal of the Israel Prehistoric Society*, 27, 5–18.
- Malleson, C. (2016). Informal intercropping of legumes with cereals? A re-assessment of clover abundance in ancient Egyptian cereal processing by-product assemblages: Archaeobotanical investigations at Khentkawes town, Giza (2300–2100 bc). Vegetation History and Archaeobotany, 25(5), 431–442. https://doi.org/10.1007/ s00334-016-0559-x
- Malleson, C., & Miracle, R. (2018). Giza Botanical Database [WWW Document]. https://doi.org/10.6078/M7JH3J99
- Mathew, L. S., Seidel, M. A., George, B., Mathew, S., Spannagl, M., Haberer, G., ... Malek, J. A. (2015). A genome-wide survey of date palm cultivars supports two major subpopulations in Phoenix Dactylifera. G3: Genes, Genomes, Genetics, 5(7), 1429–1438. https:// doi.org/10.1534/g3.115.018341
- Mattingly, D. J. (2017). The Garamantes and the Origins of Saharan Trade: State of the Field and Future Agendas. In D. J. Mattingly, V. Leitch, C. N. Duckworth, A. Cuénod, M. Sterry, & F. Cole (Eds.), Trade in the ancient sahara and beyond, trans-saharan archaeology (pp. 1–52). Cambridge: Cambridge University Press. https://doi. org/10.1017/9781108161091.002
- McKey, D., Elias, M., Pujol, B., & Duputié, A. (2012). Ecological Approaches to Crop Domestication. In P. Gepts, T. R. Famula, R. L. Bettinger, S. B. Brush, A. B. Damania, P. E. McGuire, & C. O. Qualset (Eds.), *Biodiversity in agriculture: Domestication, evolution, and sustainability* (pp. 377–406). Cambridge: Cambridge University Press. https ://hal.archives-ouvertes.fr/hal-02349581
- McKey, D., Elias, M., Pujol, B., Duputie, A., Duputié, A., & Duputie, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. *New Phytologist*, 186, 318–332. https://doi. org/10.1111/j.1469-8137.2010.03210.x
- Meilleur, B. A. (1987). Des ethnosciences à l'ethnoécologie ou du rôle des représentations écologiques populaires dans des sociétés traditionnelles. *Écologie Humaine*, V (2), 3–23. http://hdl.handle. net/2042/41279
- Mohamoud, Y. A., Mathew, L. S., Torres, M. F., Younuskunju, S., Krueger, R., Suhre, K., & Malek, J. A. (2019). Novel subpopulations in date palm (*Phoenix dactylifera*) identified by population-wide organellar genome sequencing. *BMC Genomics*, 20, 1–7. https://doi.org/10.1186/ s12864-019-5834-7
- Moncada, X., Pelsy, F., Merdinoglu, D., & Hinrichsen, P. (2007). Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. *Genome*, 49, 1459–1472. https://doi. org/10.1139/g06-102
- Moussouni, S., Pintaud, J., Vigouroux, Y., & Bouguedoura, N. (2017). Diversity of Algerian oases date palm (*Phoenix dactylifera* L., Arecaceae): Heterozygote excess and cryptic structure suggest farmer management had a major impact on diversity. *PLoS ONE*, 12, 1–14. https://doi.org/10.1371/journal.pone.0175232
- Naseef, A. S. (1995). al-'Ulā, a study of cultural and social heritage. unpublished translation from Arabic to English of « Naşīf, 'Abdallāh bin Adām Şāliḥ, 1995 — al-'Ulā: Dirāsa fī l-thurāth ḥadārī wa-l-ijtimā'ī, Riyadh, 'Abdallāh Naşīf, Riyadh.

- Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292. https://doi.org/10.1086/282771
- Newton, C., Gros-Balthazard, M., Ivorra, S., Paradis, L., Pintaud, J.-C., & Terral, J.-F. (2013). *Phoenix dactylifera* and *P. sylvestris* in Northwestern India: A glimpse into their complex relationships. *Palms*, 57, 37–50.
- Olivier de Sardan, J.-P. (1998). Émique. L'Homme, 38, 151-166. https:// doi.org/10.3406/hom.1998.370510
- Paradis, E. (2010). pegas: An R package for population genetics with an integrated-modular approach. *Bioinformatics*, 26, 419–420. https:// doi.org/10.1093/bioinformatics/btp696
- Pelling, R. (2005). Garamantian agriculture and its significance in a wider North African context: The evidence of the plant remains from the Fazzan project. *The Journal of North African Studies*, 10, 397–412. https://doi.org/10.1080/13629380500336763
- Petit, R. J., El Mousadik, A., & Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. *Conservation Biology*, 12, 844–855. https://doi.org/10.1046/j.1523–1739.1998.96489.x
- Peyron, G. (2000). Cultiver le palmier-dattier. [Montpellier]: CIRAD.
- Pintaud, J.-C., Ludeña, B., Aberlenc-Bertossi, F., Zehdi, S., Gros-Balthazard, M., Ivorra, S., ... Bouguedoura, N. (2013). Biogeography of the date palm (*Phoenix dactylifera* L., Arecaceae): Insights on the origin and on the structure of modern diversity. *ISHS Acta Horticulture*, 994, 19–36. https://doi.org/10.17660/ActaHortic.2013.994.1
- Pintaud, J.-C.-C., Zehdi, S., Couvreur, T. L. P., Barrow, S., Henderson, S., Aberlenc-Berossi, F., ... Billotte, N. (2010). Species delimitation in the genus Phoenix (Arecaceae) based on SSR markers, with emphasis on the identity of the Date Palm (Phoenix dactylifera L.). In O. Seberg, G. Petersen, A. Barfod, & J. Davis (Eds.), Diversity, phylogeny, and evolution in the monocotyledons (pp. 267–286). Arhus: Aarhus Univ Press.
- Popenoe, W. (1913). Date growing in the Old and New Worlds. Altadena, CA: West India Gardens.
- Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. *Genetics*, 155, 945–959.
- R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
- Racchi, M. L., Bove, A., Turchi, A., Bashir, G., Battaglia, M., & Camussi, A. (2013). Genetic characterization of Libyan date palm resources by microsatellite markers. *Biotech*, *3*, 4–21. https://doi.org/10.1007/ s13205-013-0116-6
- Rhouma, A. (1994). Le palmier dattier en Tunisie, I. Le patrimoine génétique. Tunis, Arabesques, INRA Tunisie, GRIDAO France, PNUD/FAO, 1.
- Rhouma, A. (2005). Le palmier dattier en Tunisie, I. Le patrimoine génétique. Rome, IPGRI, UNDP, GEF/FEM, INRAT vol. 2. https://www.biove rsityinternational.org/e-library/publications/detail/le-palmier-datti er-en-tunisie/
- Rieger, A.-K. (2017). The various ways of being mobile: Habitual knowledge, life-strategies and the ancient route networks on the Eastern Marmarica- Plateau (Northern Libyan Desert). Open Archaeology, 3, 49–68. https://doi.org/10.1515/opar-2017-0003
- Riou, C. (1990). Bioclimatologie des oasis. In V. Dollé, & G. Toutain (Eds.), Les systèmes agricoles oasiens (pp. 207–220). Montpellier: CIHEAM.
- Roué, M., & Nakashima, D. (2018). Indigenous and local knowledge and science: From validation to knowledge coproduction. In H. Callan (Ed.), *The international encyclopedia of anthropology*. Oxford: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118924396.wbiea 2215
- Rousset, F. (2008). genepop'007: A complete re-implementation of the genepop software for Windows and Linux. *Molecular Ecology Resources*, 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
- Selim, H. H. A., El-Mahdi, M. A. M., & El-Hakeem, M. S. (1970). Studies on the evaluation of fifteen local date varieties grown under desert condition in Siwa Oasis, U. A. R. Bulletin de L'Institut du desert d'egypte XVIII, 137–155.

MUEV_Evolutionary A

- Solecki, R. S., & Leroi-Gourhan, A. (1961). Palaeoclimatology and archaeology in the near east. Annals of the New York Academy of Sciences, 95, 729–739. https://doi.org/10.1111/j.1749–6632.1961.tb50073.x https://doi.org/10.1111/j.1749–6632.1961.tb50073.x
- Struffolino, S. (2012). L'oasi di Ammone. Ruolo politico, economico e culturale di Siwa nell'antichità. Una ricostruzione critica, Scienze dell'antichità, filologico-letterarie e storico-artistiche. Aracne, Roma
- Tallet, P. (2017). Du pain et des céréales pour les équipes royales: Le grand papyrus comptable du ouadi el-Jarf (papyrus H). *Nehet*, 5, 99–117.
- Tengberg, M. (2012). Beginnings and early history of date palm garden cultivation in the Middle East. *Journal of Arid Environments*, 86, 139– 147. https://doi.org/10.1016/j.jaridenv.2011.11.022
- Tengberg, M., & Newton, C. (2016). Origine et évolution de la phéniciculture au Moyen-Orient et en Égypte. In M. P. Ruas (dir.), Des fruits d'ici et d'ailleurs: Regards sur l'histoire de quelques fruits consommés en Europe, Mouans-Sartoux, Éditions Omnisciences, Histoire des savoirs (pp. 83-105). Paris: Collection Histoire des Savoirs, Éditions Omniscience.
- Terral, J. F., Newton, C., Ivorra, S., Gros-Balthazard, M., Tito de Morais, C., Picq, S., ... Pintaud, J. C. (2012). Insights into the historical biogeography of the date palm (*Phoenix dactylifera* L.) using geometric morphometry of modern and ancient seeds. *Journal of Biogeography*, 39, 929–941. https://doi.org/10.1111/j.1365–2699.2011.02649.x
- Van der Veen, M., & Westley, B. (2010). Paleoeconomic studies. In: D. J. Mattingly (Ed.), The Archaeology of Fazzan. Vol. 3: Excavations of C. M. Daniels (pp. 489–519). London: Society for Libyan Studies.
- Vardareli, N., Doğaroğlu, T., Doğaç, E., Taşkın, V., & Göçmen Taşkın, B. (2019). Genetic characterization of tertiary relict endemic Phoenix theophrasti populations in Turkey and phylogenetic relations of the species with other palm species revealed by SSR markers. *Plant Systematics and Evolution*, 305(6), 415–429. https://doi.org/10.1007/ s00606-019-01580-8

- Zango, O., Cherif, E., Chabrillange, N., Zehdi-Azouzi, S., Gros-Balthazard, M., Naqvi, S. A., ... Aberlenc, F. (2017). Genetic diversity of Southeastern Nigerien date palms reveals a secondary structure within Western populations. *Tree Genetics and Genomes*, 13, 75. https ://doi.org/10.1007/s11295-017-1150-z
- Zango, O., Rey, H., Bakasso, Y., Lecoustre, R., Aberlenc, F., & Pintaud, J.-C. (2016). Local practices and knowledge associated with date palm cultivation in Southeastern Niger. Agricultural Science, 07, 586–603. https://doi.org/10.4236/as.2016.79056
- Zehdi-Azouzi, S., Cherif, E., Moussouni, S., Gros-Balthazard, M., Abbas Naqvi, S., Ludeña, B., ... Aberlenc-Bertossi, F. (2015). Genetic structure of the date palm (*Phoenix dactylifera*) in the Old World reveals a strong differentiation between eastern and western populations. Annals of Botany, 116, 101–112. https://doi.org/10.1093/aob/ mcv068

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Gros-Balthazard M, Battesti V, Ivorra S, et al. On the necessity of combining ethnobotany and genetics to assess agrobiodiversity and its evolution in crops: A case study on date palms (*Phoenix dactylifera* L.) in Siwa Oasis, Egypt. *Evol Appl*. 2020;13:1818–1840. <u>https://doi.org/10.1111/eva.12930</u>

6.2 Marginalisations, résistances et innovations dans les franges périurbaines

DARLY Ségolène, FOURAULT-CAUËT Véronique, RAYMOND Richard (dirs.), 2020, <u>Marginalisations,</u> <u>résistances et innovations dans les franges périurbaines</u>, ISBN 978-2-7535-7978-1, Rennes : Presses Universitaires de Rennes, 150 p.

En attendant le monde urbain... Jardins partagés et espace de nature construits au nord de Paris. Crédit photographique : Richard RAYMOND, Saint-Ouen, 2014.

L'ouvrage présenté est, avant tout, le fruit d'un travail collectif. Un groupe de chercheurs et de chercheuses s'est organisé autour d'un constat et d'une proposition de recherche. Trois personnes, dont un membre de l'équipe ESPP, Richard RAYMOND, ont animé ce groupe. Cet ouvrage est l'une des valorisations de ce travail conduit en commun.

Le constat est le suivant. Afin de faire face aux changements environnementaux d'envergure, annoncés ou déjà constatés, de nombreux intellectuels appellent à changer nos modes de vie. Ajustements progressifs ou changements radicaux, il s'agit d'être plus précautionneux, plus économes, plus attentifs... Ces appels font l'objet de très nombreux discours. Ces discours sont structurés et argumentés. Pourtant, les traductions pratiques de ces appels au changement restent marginales et nombreuses sont celles qui semblent sans lendemain, absorbées par le système dont elles prétendaient vouloir s'émanciper. Les effets des discours érudits ou des injonctions savantes pour engager une profonde transformation de nos modes de vie semblent bien discrets.

Face à ce constat, le groupe de recherche s'est proposé de documenter et d'analyser des initiatives et des manières de vivre, des façons de composer avec l'environnement qui sont déjà à l'œuvre. Ces initiatives et ces manières de vivre apparaissent comme autant d'expériences concrètes permettant de construire des alternatives à un monde dominant qui, par facilité, est appelé monde urbain. Ce travail s'est concentré sur des situations caractérisées par une existence discrète, à l'écart des dynamiques qui structurent le monde dominant, dans les marges du monde urbain.

Ce collectif a ainsi pu mettre en évidence une pluralité d'initiatives et de formes de résistance aux dynamiques habituellement dénoncées comme responsables des changements environnementaux. Au-delà de cette attention à la diversité, un des apports de ce travail a été de proposer d'analyser ces initiatives comme différentes « figures de l'écart ». Certaines apparaissent comme des initiatives éphémères, comme autant de moments nécessaires pour accepter de réintégrer le monde urbain fui pour un instant. D'autres semblent plus pérennes, marquées par la création de modes de régulation locale souvent peu verbalisés mais appuyés sur des processus d'ajustements continus. Cette analyse est signée sous le nom de Camille NOÛS.

A la suite de cet ouvrage, trois invitations méthodologiques peuvent être proposées pour l'analyse d'activités, de dispositifs ou de situations souvent décrits comme autant d'alternatives et d'émancipations d'un système jugé dominant. La première de ces invitations est la prise en compte du temps long afin de capter les effets d'entrainement au-delà d'une adhésion fugace ou d'un effet de mode. La deuxième de ces invitations est d'inscrire ces initiatives dans la complexité des modes d'habiter des populations concernées. Enfin, la troisième de ces invitations, plus discutée au sein des Sciences Humaines et Sociales contemporaines, est de tenir une approche interdisciplinaires large incluant les sciences de l'environnement et de la nature pour mettre en perspectives les appréciations emiques et les analyses etiques de ces alternatives. Ces invitations convergent vers un réarmement de l'ethnoécologie.

Sous la direction de Ségolène DARLY, Véronique FOURAULT-CAUËT et Richard RAYMOND

MARGINALISATIONS, RÉSISTANCES ET INNOVATIONS DANS LES FRANGES PÉRIURBAINES

Presses universitaires de Rennes 2020

REMERCIEMENTS

Cet ouvrage rassemble une partie des résultats du projet de recherche « Paysages des franges périurbaines : représentations, indicateurs, outils », financé par le ministère de la Transition écologique et solidaire dans le cadre du programme « Paysage et développement durable 2 ». Il s'appuie également sur une sélection de textes présentés lors du colloque « Paysage des franges urbaines : décrire, habiter, gouverner » qui s'est tenu du 5 au 7 novembre 2014 à Narbonne. Nous remercions le ministère de la Transition écologique et solidaire, les UMR Éco-anthropologie et Ladyss et la ville de Narbonne pour leur soutien financier et matériel. Nous remercions aussi l'ensemble des participants et participantes au colloque et aux séminaires ainsi que les auteurs et autrices de cet ouvrage pour la qualité de leurs contributions.

> © PRESSES UNIVERSITAIRES DE RENNES SAIC Édition – Université Rennes 2 2 avenue Gaston-Berger – Bâtiment Germaine-Tillion 35043 Rennes Cedex

www.pur-editions.fr

Mise en page : Julie SIMON pour le compte des PUR

ISBN : 978-2-7535-7978-1 ISSN : 1761-4457 Dépôt légal : 2^e semestre 2020

TABLE DES MATIÈRES

INTRODUCTION	7
Bertrand SAJALOLI	
Habitat précaire et populations démunies face au risque d'inondation	
dans le Val d'Orléans. Marges et entre-deux	29
Étienne Grésillon, Jean-Paul Amat et Océane Kneur	
La forêt du bois de Vincennes : une frange paysagère	
dans l'agglomération parisienne comme marge de manœuvre pour les SDF?	47
Valérie BILLAUDEAU et Arnaud DE LAJARTRE	
« Aux marges, le paysage solidaire »	59
Christine BOUISSET et Isabelle DEGRÉMONT	
Vivre dans les marges urbaines du littoral landais :	
un « entre-deux » ville/forêt	71
Perrine MICHON et Céline LOUDIER-MALGOUYRES	
Le nouveau rapport à l'espace public dans les franges urbaines	37
Richard RAYMOND, Blandine NOËL,	
Véronique FOURAULT-CAUËT et Ségolène DARLY	
Usages des franges périurbaines en Île-de-France :	
les figures de l'écart aux marges de l'urbain10)5
Guillaume FABUREL et Mathilde GIRAULT	
La fabrique métropolitaine au défi de ses périphéries.	
Vers une infrapolitique de l'habiter ?	5
Conclusion 14	3
Les Auteurs 14	9

INTRODUCTION

Dans le débat qui anime à l'heure actuelle la recherche sur le renforcement des centralités urbaines et ses conséquences sur la recomposition des espaces périphériques à la ville, une catégorie d'analyse, les franges périurbaines, pourtant indissociables du phénomène de polarisation des territoires, ne sont que rarement mobilisées.

Nous souhaitons dans cet ouvrage éclairer cet angle mort en partant de l'analyse des espaces de démarcation entre la ville dense et son environnement pour montrer que ces marges spatiales peuvent aussi être vues comme des combinaisons originales de ressources territoriales mises à profit par diverses populations.

Dans ce texte introductif, nous rappelons dans un premier temps les principaux traits du fait urbain et la façon dont les modalités contemporaines de la gouvernance urbaine imposent à la fois une homogénéisation des modèles urbains et une hiérarchisation des territoires déqualifiant les franges. Nous rappelons dans un second temps les limites que ces phénomènes posent à la recherche de nouvelles formes d'urbanités répondant à d'importants enjeux environnementaux. Nous proposons alors de considérer avec attention ce qui se passe dans les franges périurbaines, à la croisée des marges spatiales et sociales, à l'écart des dynamiques métropolitaines. Nous supposons que cette position particulière permet l'émergence de différentes figures de l'écart marquées par diverses innovations qui portent en germe quelques pistes pour répondre aux difficultés posées par l'urbanisation elle-même.

EMERGENCE PAYSAGÈRE ET DÉQUALIFICATION POLITIQUE DES FRANGES PÉRIURBAINES DEPUIS LE MILIEU DU XX^e SIÈCLE

Depuis le xx^e siècle la France est marquée, comme l'ensemble des pays européens, par un processus sans précédent d'urbanisation. L'emprise de l'urbain dans la société est couramment illustrée par les évaluations statistiques du phénomène de concentration démographique. Ainsi, un tiers de la population de l'Union européenne vit dans une métropole de plus d'un million d'habitants et en France, les 17 aires urbaines de plus de 400000 habitants identifiées par l'Insee concentrent 45 % de la population hexagonale, soit 26,5 millions d'habitants

Marginalisations, résistances et innovations dans les franges périurbaines

8

alors que 80 % de la population occupe les 20 % du territoire qui correspondent à l'urbain¹. Dans ce contexte, Henri Lefebvre proposait dès la fin des années 1960 de considérer l'avènement d'une ère de l'« urbain généralisé » (Lefebvre, 1968). De nombreux auteurs, tels que l'urbaniste Françoise Choay (1994), le philosophe Thierry Paquot (2006) ou encore le géographe Michel Lussault (2007), ont, depuis, repris cette lecture des transformations du monde contemporain.

S'il marque l'espace géographique et les rapports que les populations entretiennent avec lui, ce processus ne présente pas une expression territoriale homogène, et s'appuie au contraire sur un complexe hiérarchisé qui a été largement analysé au prisme du couple centres-périphéries.

Polarisation et discontinuités paysagères au cœur du processus contemporain d'urbanisation

L'observation des formes spatiales de l'urbanisation de la société fait émerger depuis les années 1960 trois grandes préoccupations chez les spécialistes de la question (scientifiques et praticiens) : le renforcement de centralités économiques formant les nœuds d'une armature urbaine de plus en plus structurante de l'espace géographique français, l'extension et le desserrement des formes spatiales de la ville à grande échelle et la mutation des rapports que les individus entretiennent avec l'espace dans ces nouveaux territoires qualifiés d'urbains. Ces trois processus géographiques témoignent d'une polarisation de plus en plus forte des flux de biens, mais aussi de richesses et d'informations qui soutiennent le modèle de développement économique fondé sur la consommation de masse et l'accélération des échanges commerciaux. Ces phénomènes de polarisation, fruits de cette intégration de plus en plus poussée à l'économie de marché, engendrent des discontinuités sociales et spatiales constitutives du processus contemporain d'urbanisation des sociétés.

Riches de nombreux habitants, les espaces urbains concentrent en effet de plus en plus de consommateurs et de marchandises standardisées, mais aussi de richesses et d'informations dont la circulation est fondamentale aux échanges commerciaux moteurs des économies occidentales. Dans ce modèle, caractéristique du fonctionnement de la société de consommation qui émerge à partir des années 1960, les villes jouent le rôle central de carrefour d'échanges grâce à leur position au sein de réseaux étendus d'infrastructures de communication. Plus que jamais, ces infrastructures maillent le territoire et dessinent les traits d'une armature marquée à la fois par des hiérarchies entre les pôles urbains et par des interdépendances entre ces pôles qui les constituent².

^{1.} Source : Insee.

^{2.} Bien desservis, certains pôles urbains occupent des places centrales au sein du réseau en concentrant les emplois très spécialisés et bien rémunérés, les sièges sociaux des grandes entreprises,

En réponse à ce phénomène de concentration démographique aux carrefours de l'armature urbaine, on assiste par ailleurs, à grande échelle, à une polarisation des flux locaux au sein de vastes zones à l'intérieur desquelles s'établissent des échanges entre un ou des pôles de forte densité et des espaces limitrophes de plus faibles densités. C'est ce dont rend compte le zonage « en aires urbaines » du territoire français mis en place par l'Insee en 2010. S'il fait d'un côté disparaître le rural en considérant la réalité des territoires au seul prisme de leurs relations avec la ville, il permet de dessiner le contour de polarités urbaines (par la catégorie des « pôles urbains ») autour desquelles se déploient des périphéries qui semblent gagner en qualités urbaines (les « couronnes périurbaines »). L'Insee rappelle ainsi que de 1999 à 2008, l'espace des grandes aires urbaines s'est fortement étendu (+39,2 %), jusqu'à représenter près de la moitié du territoire (46,1 %), contre un tiers dix ans auparavant. Ces aires urbaines englobent plus de 80 % de la population et des emplois. L'autre caractéristique de la croissance urbaine est qu'elle est plus forte aux périphéries que dans les centres des aires urbaines, qu'il s'agisse des couronnes ou des communes multipolarisées des grandes aires. Si l'on s'en tient aux catégories du zonage en aires urbaines proposées en 2010 par l'Insee, ce sont les couronnes des grandes aires qui constituent désormais la catégorie la plus étendue du zonage (28,6 % du territoire national), et dépassent la superficie des communes isolées hors influence des villes. Les communes multipolarisées des grandes aires couvrent quant à elles 10 % du territoire métropolitain et rassemblent plus de 5 % de la population.

Ce « débordement » démographique de la ville vers des territoires de plus faible densité limitrophes témoigne d'un processus que l'on peut qualifier d'explosion de l'urbain et dont le phénomène le plus marquant, parce que directement perceptible, est sans doute celui de l'« étalement urbain », terme couramment utilisé lorsque le rythme d'artificialisation des sols dépasse celui de la croissance démographique. En Europe, c'est depuis les années 1950 que ce phénomène prend de l'ampleur. Depuis, l'artificialisation des terres progresse de 78 % tandis que la population urbaine n'augmente que de 33 % (Sainteny, 2008). En France métropolitaine, depuis les années 1980, le taux d'artificialisation des terres a été quatre fois plus important que la croissance démographique. Ce phénomène s'explique notamment par l'augmentation de la surface artificialisée par habitant qui est passée de 6 à 8 ares sur la même période, par la baisse de la taille des ménages (décohabitation, vieillissement, divorces...), par les politiques d'urbanisation (habitat individuel ou collectif, type d'infrastructures) et enfin par l'accroissement des surfaces dédiées aux infrastructures routières et aux activités économiques (responsables de la moitié de l'artificialisation en France), autant de

les universités et les centres de recherche, les activités de conseil... Ce phénomène est depuis longtemps étudié par les géographes (*i. e.* HAUTREUX et ROCHEFORT, 1965 ou PUMAIN et SAINT-JULIEN, 1976; 1978).

Marginalisations, résistances et innovations dans les franges périurbaines

10

facteurs associés au fait urbain. Entre 1992 et 2004, ce sont 600 km² qui ont été artificialisés. Si la progression de cette extension urbaine est légèrement moins forte ces dernières années, c'est encore plus de 490 km² qui ont été artificialisés entre 2006 et 2014 (Fontes-Rousseau et Jean, 2014). Ces surfaces artificialisées couvrent 9,3 % de l'espace de la France métropolitaine et se concentrent autour des pôles urbains. Les paysages urbanisés s'étendent donc, favorisés par le développement des transports individuels et le coût du foncier plus faible loin des centres urbains.

Au-delà de la simple question de l'artificialisation diffuse de l'espace, l'analyse détaillée des mécanismes de ce desserrement urbain montre très tôt qu'il s'accompagne d'une spécialisation fonctionnelle (Berger, 2004). Alors que la plupart des emplois restent dans les centres, les espaces urbains les plus périphériques sont des espaces de logement (principalement individuel), d'activité de masse (industries, commerces) ou d'équipements (espaces de stockage, infrastructures énergétiques, etc.) malvenus dans les centres. Ces modes d'occupation des sols progressent respectivement 4,4 et 6,6 fois plus vite que la population (Sainteny, 2008). La moitié de ces nouvelles constructions se fait ainsi dans des communes rurales (*i. e.* de moins de 2000 habitants agglomérés) situées à proximité des centres urbains.

En parallèle des observations relatives à ces nouvelles formes spatiales de l'extension du tissu urbain, l'hypothèse d'une mutation des rapports qu'entretiennent leurs habitants à l'espace a fait l'objet d'une attention particulière et connaît récemment un réinvestissement de la part des chercheurs à la lumière de suivis longitudinaux de ménages périurbains. Alors que certains ont pu attribuer à ces nouveaux « rurbains », nommés aujourd'hui « périurbains », la diffusion d'un mode de vie « déterritorialisé » (emplois dans les centres, achats domestiques en grandes surfaces, faibles relations de voisinage; Raffestin, 1986; Paquot, 1990; Choay, 1994), d'autres montrent au contraire, dès les années 1970 (Bauer et Roux 1976; Mendras, 1977), que certains habitants de ces extensions urbaines réinvestissent leur espace de vie de valeurs, porteuses d'une nouvelle territorialisation. Ils « créent des associations, organisent des fêtes, vont acheter des œufs à la dernière ferme qui a encore des poules et se lamentent de ne plus avoir leur lait produit par la vache voisine » (Mendras, 1977). Le caractère alternatif de ces modes d'habiter (Mathieu, 1996; 2007; Mathieu et al., 2011) apparaît déjà. Depuis, la recomposition des rapports aux espaces et l'émergence de nouveaux liens territoriaux ont été confirmées par de nombreux géographes (*i. e.* Berger, 2004; Rougé, 2012; 2013; Bonnin-Oliveira, 2013; Poulot, 2013; Berger et al., 2014). Le périurbain retrouverait sa dimension territoriale en réaffirmant des qualités qui lui sont propres.

Ainsi, sous l'effet d'une intégration de plus en plus forte des flux de biens et d'informations à l'économie de marché, diverses unités paysagères, étendues spatiales marquées par une cohérence de leur matérialité et des systèmes de

valeurs sous-tendant leurs représentations sociales (Raymond *et al.*, 2015) se déploient à la périphérie des pôles urbains. Communes dortoirs ou communes néo-urbaines, communes rurales en repeuplement, grands ensembles ou nappes pavillonnaires, nouveaux éco-quartiers, zones industrielles et commerciales... s'identifient aisément. Ces unités constituent des zones de discontinuité, des espaces de transition plus ou moins nets, entre ces différentes unités paysagères ou entre ces unités paysagères et la campagne qui les entoure encore, entre ce qui est associé aux paysages urbains et ce qui ne l'est pas. Elles marquent aussi des transitions dans les modes d'appropriation de l'espace et de construction des territoires issus de cette nouvelle « économie urbaine ». Les discontinuités morphologiques sont un premier indice de l'existence des franges urbaines que nous interrogeons dans cet ouvrage; l'existence de modes d'habiter ou de rapports aux territoires différents de part et d'autre de ces discontinuités en sont un deuxième.

Renforcement des centralités économiques et déqualification des franges périurbaines « dépendantes » dans les projets politiques d'aménagement du territoire

L'urbain apparaît ainsi comme un monde fragmenté d'un point de vue fonctionnel et social, ainsi que le soulignent la sociologue Marie-Hélène Bacqué et le géographe Jean-Pierre Lévy (2009), l'urbaniste Éric Charmes (2011) ou les sociologues Jean-Marc Stébé et Hervé Marchal (2014). De ce constat de la fragmentation urbaine est né un courant de pensée dédié à l'analyse des rapports de dépendances et de subordination entre pôles et territoires périphéries au sein du système urbain³. Ce courant s'appuie en partie sur des observations anciennes (Hautreux et Rochefort, 1965; Pumain et Saint-Julien, 1976; 1978) reprises par l'économie spatiale et qui démontrent le rôle de centralités économiques que jouent les pôles urbains dans la mondialisation. Ceux-ci garantissent les conditions d'accueil des emplois très spécialisés et bien rémunérés, des sièges sociaux des grandes entreprises, des universités et des centres de recherche, des activités de conseil (Bourdeau-Lepage et al., 2009). Bien que de nombreux auteurs plaident pour une remise en question de cette représentation des franges périurbaines⁴, on associe toujours aisément les périphéries dédiées aux logements et activités « rejetées » des villes à des territoires aux trajectoires dépendantes et dominées par l'influence des centres où se concentrent les emplois et les richesses.

^{3.} Cette grille de lecture alimente toujours une interprétation sociologique très négative du périurbain, que véhiculent encore des auteurs à forte visibilité médiatique, comme C. Guilluy dans *La France périphérique*.

^{4.} Voir notamment les « captifs » du géographe Lionel Rougé (2005) qui s'interroge ensuite sur la nécessité de « réhabiliter » le périurbain (ROUGÉ, 2012; 2013).

Cette grille de lecture, valorisant les zones centrales des agglomérations et renvoyant les franges à leur statut de dépendances, d'espaces « sous influence », forge aujourd'hui les modalités de production de connaissances sur ces territoires; elle témoigne également des mutations profondes dans la gouvernance de la production de la ville et de l'aménagement du territoire.

Ces représentations sont en effet à l'heure actuelle largement étayées en France par l'appareil de la statistique publique qui distingue les territoires qualifiés de périurbains en fonction de leur dépendance à l'agglomération centrale. Taux de navetteurs, continuité physique ou non de l'agglomération sont en effet retenus comme des indicateurs fonctionnels et paysagers de la spécificité de ces territoires. Dans ce paysage statistique qui est devenu la norme, si les territoires périurbains tiennent une place numériquement importante, ils sont surtout appréhendés en fonction de leur degré de proximité avec la ville centre⁵.

Cette hiérarchisation statistique des territoires urbains n'est cependant que le reflet des mutations contemporaines des modalités de production de l'espace urbain et de sa gouvernance. La mondialisation de l'économie et des échanges et l'affaiblissement de la capacité financière de la puissance publique renforcent en effet depuis plusieurs décennies le rôle des acteurs privés dans la gestion et la gouvernance des aires urbaines. En conséquence, ces acteurs privés deviennent tout à la fois acteurs et ressources du développement urbain grâce aux capitaux d'investissement qu'ils détiennent. Ces capitaux sont cependant extrêmement mobiles et de plus en plus intégrés à des réseaux mondiaux. La compétition entre territoires devient alors de plus en plus vive car il convient d'être, pour chacun de ces territoires, le plus attractif (Harvey, 1985; Friedman, 1986; Scott, 2012; Storper, 2013). Cette compétition repose sur un ensemble de stratégies visant à se distinguer et attirer les ressources de l'économie-monde. Dans ce contexte, ce ne sont pas leurs particularités liées aux systèmes originaux d'usages et de valeurs que les territoires vont faire valoir mais bien leur capacité à développer l'offre de logements, d'emplois et de services (Lefevbre, 1968; Faburel, 2018). Ils peuvent ainsi mieux se comparer et s'inscrivent de fait dans une hiérarchie, du mieux doté au moins doté.

D'un point de vue plus institutionnel, l'adoption politique de ce modèle de développement fondé sur la compétitivité économique des territoires dans une économie de marchés des capitaux urbains s'exprime aujourd'hui explicitement par la création du statut administratif des métropoles par la loi du 16 décembre 2010 portant sur la réforme des collectivités territoriales. Celle-ci promeut les plus grands centres urbains, les centres métropolitains, comme piliers de l'organisation politique nationale. Elle vise à affirmer le rôle des grandes agglomérations comme moteurs de la croissance et de l'attractivité du

5. Voir notamment CUSIN et al., 2016.

territoire. La nouvelle organisation administrative territoriale de la République française confirme et renforce cette domination urbaine ainsi que la mise en concurrence de ces centres dans le registre de l'économie mondialisée. La loi de modernisation de l'action publique territoriale et d'affirmation des métropoles, du 27 janvier 2014 (dite « loi MAPTAM »), affermit ainsi le rôle assigné à ces centres métropolitains. Elle entérine la prééminence de ces métropoles sur leurs périphéries. Ces fonctions politiques sont encore confirmées par la loi du 7 août 2015 portant sur l'organisation territoriale de la République (dite « loi NOTRe »). Selon l'article L5217-1 du Code général des collectivités territoriales. une métropole est un établissement public de coopération intercommunale (EPCI) qui regroupe plusieurs communes « d'un seul tenant et sans enclave » qui s'associent au sein d'« un espace de solidarité pour élaborer et conduire ensemble un projet d'aménagement et de développement économique, écologique, éducatif, culturel et social de leur territoire afin d'en améliorer la compétitivité et la cohésion ». C'est donc bien au sein de ces métropoles, vues comme espace cohérent et unifié, que se décident et se construisent les politiques d'aménagement et de gestion des territoires locaux et des populations qu'ils accueillent (Faburel, 2018). Or, c'est bien au centre de ces métropoles, là où se concentre richesses et pouvoirs, que les décisions sont prises. C'est au profit de ces centres, qui se doivent être plus attractifs, que les décisions sont prises. Les centralités se renforcent encore au détriment des périphéries, accentuant ainsi les discontinuités caractéristiques de la production des franges périurbaines.

Cependant, si les pôles urbains concentrent certaines ressources spatiales qui en font des centralités au sein des réseaux d'échanges de biens et d'information de l'économie de marché, les périphéries ne sont pas exemptes de ressources particulières. Comme le montrent les réflexions qui se penchent plutôt sur les dynamiques des territoires ruraux (Bühler, Darly et Milian, 2015; Halfacree, 2007; Sajaloli, 2016), un moindre coût du foncier, de plus faibles densités, des espaces végétalisés plus étendus, des formes de végétation plus foisonnantes, un éloignement aux lieux de pouvoirs (c'est-à-dire autant de ressources spécifiques davantage disponibles dans les périphéries urbaines qu'elles ne le sont dans les centres) peuvent en effet aussi être considérés comme des ressources, pour l'innovation sociale mais aussi l'intégration à la mondialisation. Ainsi, les ségrégations sociales, les concentrations de certaines ressources dans les centres et la disponibilité d'autres ressources dans les périphéries marquent aussi des discontinuités dans les mondes urbains. Ces discontinuités sont un troisième indice qui dessine et précise ce que sont les franges périurbaines travaillées ici. des espaces qui semblent mis à l'écart du projet politique d'aménagement du territoire mais qui rassemblent pourtant des ressources territoriales à prendre au sérieux dans un contexte de crise du modèle de développement urbain.

SE METTRE À L'ÉCART DANS LES FRANGES POUR Y TROUVER DES RÉPONSES À LA CRISE URBAINE?

À l'échelle nationale, l'organisation du territoire français ne peut donc plus s'appréhender à partir des pays historiques plus ou moins ruraux et polarisés par leur capitale régionale. L'armature des villes elle-même, organisée en fonction de leurs particularités et de l'éloignement à Paris, doit être reconsidérée. Mais plus qu'un dessin, une figure spatiale, le fait urbain désigne un système politique. C'est le dessein urbain qui transforme les territoires, et cette transformation ne répond pas toujours aux grands enjeux environnementaux qui marquent notre époque. Or, le réchauffement climatique global, l'érosion de la biodiversité, les crises sanitaires et alimentaires... imposent de rechercher de nouveaux modes de production et de consommation. C'est la gestion de nos ressources, qu'elles soient énergétiques, génétiques, alimentaires, spatiales... qui est en jeu et qui doit faire l'objet de profonds changements.

Limites environnementales de la concentration urbaine

Si la date du début de l'Anthropocène fait débat, le début du XXI^e siècle semble clairement s'y inscrire (Bonneuil et Fressoz, 2013). Le caractère anthropogénique des grandes crises environnementales n'est plus guère discutable (Chartier et Rodary, 2016). Les modes de production de masse, qu'ils soient agricoles ou industriels, et les modes de consommation associés engendrent des bouleversements écologiques et sociaux profonds. Et les problèmes posés par ces changements globaux s'inscrivent dans le champ social et politique. Ainsi, concomitamment à l'urbanisation du territoire français et de sa population, différentes crises environnementales surgissent et l'avènement de l'ère urbaine n'y est sans doute pas étranger.

Ainsi, l'extension du tissu urbain et l'artificialisation des milieux sont deux des principales causes de l'érosion de la biodiversité identifiées par les écologues. Elles entraînent la disparition et la fragmentation de nombreux habitats naturels de différentes espèces ou de communautés biologiques originales. Les ports et aéroports, équipements des grands pôles urbains, sont les portes d'entrée à l'introduction de nombreuses espèces exotiques envahissantes, autre cause habituellement identifiée de l'érosion de la biodiversité. De la même manière, le développement de modes d'habiter basés sur l'utilisation de véhicules individuels motorisés est reconnu comme responsable d'une part importante de la consommation d'hydrocarbures fossiles. L'agrégation des activités dans les pôles urbains concentre les pollutions à des taux souvent supérieurs aux capacités d'assimilation des milieux environnants. Ces concentrations nécessitent alors des traitements onéreux et pas toujours efficaces. Les voiries, les réseaux

d'adduction d'eau potable, les réseaux de collecte d'eaux usées, les réseaux de distribution d'énergie... sont autant d'infrastructures qui mobilisent matériaux et énergie pour soutenir le métabolisme urbain (Barles, 2002) en maillant toujours plus le territoire.

Au-delà des infrastructures, le fonctionnement même des pôles urbains génère des interrogations environnementales. La concentration de consommation d'énergie, l'inertie thermique des matériaux et bâtiments, le faible taux de surface végétale de nombreux centres... favorisent la formation d'îlots de chaleur. Et la taille de ces centres urbains augmente l'intensité et la stabilité de ces îlots de chaleur. Lors d'épisodes caniculaires, devenus de plus en plus fréquents ces dernières années, les écarts de température entre la ville et son environnement peuvent atteindre plusieurs degrés (Cantat, 2004; Masson, 2010). Ces écarts de températures conjugués aux contextes démographiques, sociaux et économiques sont responsables d'une surmortalité importante de personnes fragiles (Sakhy, 2016). Certaines métropoles tentent alors de lutter contre ces îlots de chaleurs en promouvant plus de végétation ou de nouvelles formes de végétation de la ville (Boutefeu, 2007). C'est le cas de Paris, par exemple.

De même, l'essentiel des aliments consommés dans les métropoles reste des aliments achetés dans les circuits longs de la grande distribution. Produits standardisés, respectant les normes sanitaires, ces produits alimentaires sont aussi alignés sur des normes de commercialisation répondant aux aspirations du plus grand nombre. La concentration des habitants dans les centres urbains et le développement des modes de productions agricoles de plus en plus intégrés dans des filières technico-économiques créent peu à peu une distance entre producteurs et consommateurs (Morgan et Sonnino, 2010). Malgré l'engagement de certaines villes telles que Rennes, Amiens ou Paris, de favoriser les circuits courts et les productions locales pour l'alimentation de leurs habitants, les interrelations entre les espaces de productions agricoles et les aliments consommés ne sont pas toujours perçues par les citadins, ni inscrites dans le territoire métropolitain comme le montrent les géographes Camille Hochedez et Julie Le Gall à propos de la métropole lyonnaise (Hochedez et Le Gall, 2015). Les systèmes de production de ces biens alimentaires, leur acheminement sur de longues distances, génèrent pourtant des coûts environnementaux non négligeables.

Enfin, et cette question préoccupe nombre de gestionnaires et de spécialistes de l'aménagement des territoires, l'extension des espaces artificialisés engendrée par l'attractivité des centres urbains se réalise presque exclusivement au détriment de terres agricoles. Ces espaces couvraient ainsi 5 millions d'hectares en 2014, soit près de 9 % de la France métropolitaine. En trente ans, ces espaces ont progressé de 65 %. Avec un rythme moyen de 48000 ha par an au cours de ces trente dernières années, l'artificialisation totale de l'espace agricole ne représente que 7 % de la SAU en France, mais elle concerne en grande partie

Marginalisations, résistances et innovations dans les franges périurbaines

16

les terres aux potentiels agronomiques les plus intéressants. La lutte contre la consommation de terres agricoles et naturelles en pourtour d'agglomération a ainsi fait l'objet d'un texte de loi promouvant la densification des villes. « Refaire la ville sur la ville » est un des mots d'ordre de la loi relative à la solidarité et au renouvellement urbains (dite loi SRU) de 13 décembre 2000, repris par la loi du 12 juillet 2010 portant sur engagement national pour l'environnement (dite loi Grenelle II). En Île-de-France, l'agriculture a été pensée dans les dernières décennies en articulation explicite avec une volonté de densification de la métropole parisienne pour ne citer qu'elle, de limitation et de mise en ordre de son extension. À une échelle fine, l'apparition de « projets agri-urbains » est révélatrice (Poulot, 2014). Une nouvelle figure de l'urbanisme apparaît, la lisière urbaine, censée contenir l'extension urbaine par un aménagement des franges périurbaines (Raymond *et al.*, 2015). Ainsi, la concordance de nombreuses crises environnementales dévoile les limites du modèle urbain tel qu'il se déploie dans l'espace depuis le xx^e siècle.

Limites politiques des solutions de la « ville durable »

En réponse à ces constats, les principaux acteurs publics et privés de l'économie urbaine ont globalement repris les principes du concept de « développement durable » comme nouveau cadre de la production de l'espace urbain (Béal, 2011). Ce choix est loin d'être anodin puisqu'il conditionne la poursuite des objectifs de protection de l'environnement au maintien de la production de richesses dans un contexte d'intégration à l'économie de marché. Or, au cœur de cette équation à l'énoncé plutôt clair se nichent plusieurs obstacles de fond qui entravent la mise en œuvre de solutions satisfaisantes.

D'un côté, les problèmes environnementaux évoqués plus haut devraient imposer de rechercher des solutions locales, adaptées à chaque contexte écologique et social, solutions parfois radicales, initiatrices de transitions. Or la démocratie participative, pourtant régulièrement invoquée par le législateur, se heurte à des difficultés de mise en œuvre qui limite grandement l'influence du citoyen sur l'évolution de son environnement de vie. En effet, la complexité des processus à l'œuvre, l'insuffisance des moyens techniques et financiers des autorités publiques, la recherche de solutions originales ou de la paix sociale conduisent à associer les populations à la gouvernance des aires urbaines et des métropoles en particulier. La loi du 27 février 2002, relative à la démocratie de proximité (dite loi Vaillant), entérine ces appels aux citoyens en posant l'obligation pour les communes de plus de 80 000 habitants de créer un ou plusieurs conseils de quartier, ce qui contraste avec le peu d'éléments permettant un tel investissement dans les communes périurbaines, en mal de reconnaissance politique et citoyenne. Les scènes dites de démocraties participatives se multiplient : réunions

publiques, conseils citoyens, conseils de quartiers... Les dispositifs participatifs se développent : budgets participatifs, appels à projets, plateformes numériques, organisation de *meet-ups*... Cependant, les analyses de ces scènes et dispositifs dits « participatifs » montrent que les habitants y sont souvent instrumentalisés par une élite administrative ou politique constituant les oligarchies urbaines (Rancière, 2005; Abram, 2007; Blondiaux et Sintomer, 2009; Boltanski, 2009...). Les initiatives ou les projets de changements radicaux y sont souvent étouffés au profit d'une présentation apaisée de démarches qui, somme toute, ne s'écartent pas du mode de développement du fait urbain pensé par et pour les acteurs publics et privés de l'économie urbaine globalisée.

De notre point de vue, ce constat, qui semble partagé par la plupart des observateurs, témoigne du fait que la construction et l'identification de solutions environnementales locales entrent en fait en tension avec l'impératif principal de ces acteurs qui est de maintenir l'attractivité économique de l'espace urbain. Or, comme nous l'avons rappelé, les conditions dans lesquels cet objectif s'impose depuis le milieu du XX^e siècle sont celles de la mise en concurrence des territoires pour l'affectation des capitaux d'investisseurs financiers. La mondialisation de l'économie et des échanges se traduit en effet par un renforcement de la puissance des métropoles, qui, reliées entre elles, entrent en compétition les unes avec les autres. Les formes de compétitivité alors privilégiées favorisent le plus souvent des atouts similaires entre métropoles du monde : connectivité, qualité de la main-d'œuvre, climat politique et culturel propice à l'innovation, etc. Le territoire en tant que ressource n'est guère valorisé dans ce type de perspective, et il en découle une standardisation économique et paysagère perceptible jusqu'aux franges de l'agglomération.

Dans ce contexte, une uniformisation des réponses proposées par les villes aux enjeux environnementaux est également perceptible. Si la charte d'Aalborg entend en 1995 promouvoir des approches urbanistiques soucieuses de la spécificité des sites, dans la pratique, on voit émerger un ensemble de solutions essentiellement techniques aux enjeux de la durabilité urbaine. La circulation intense de modèles de quartiers durables ou « écoquartiers » en l'espace de quelques années est tout aussi révélatrice d'une normalisation des prises en charge d'enjeux environnementaux aux aspects locaux pourtant différenciés. Une grande partie des réponses aux crises environnementales contemporaines apparaît sous la forme de changements techniques ou technologiques (nouveaux équipements de traitement des déchets, nouvelles formes de végétalisation de la ville, nouvelles motorisations des véhicules...). La performance de ces équipements urbains s'évalue en fonction de leurs impacts sur l'environnement local, parfois au prix d'un impact plus lointain comme le montre l'écologue Marc Barra à partir d'une analyse des conséquences sur la biodiversité globale de certaines pratiques urbaines locales pourtant promues pour leur caractère environnemental

Marginalisations, résistances et innovations dans les franges périurbaines

18

(Barra, 2015). De nombreux matériaux utilisés pour la construction de la ville ou l'alimentation des urbains représentent des centaines de millions de tonnes de matières premières. Celles-ci sont cultivées ou extraites, transformées hors des centres urbains puis transportées jusqu'à la ville (Barles, 2002). Ces actions ont un impact sur l'environnement loin de la ville, montrant ainsi les limites de ces réponses technologiques. Pourtant, ce sont bien ces réponses technologiques, souvent reproduites à l'identique, qui sont généralement adoptées.

Conséquence plus problématique de cette tendance, l'adoption de solutions techniques généralisables confine les résidents à un rôle de simple exécutant de consignes définies par les autorités. Cette dissolution perceptible des liens à l'espace habité sous l'effet d'un encadrement institutionnel de la production de l'espace se constate, par exemple, dans la perte de la culture du risque chez de nombreuses populations habitant des espaces inondables. La particularité de ces espaces, pourtant structurante, ne guide plus, ou de moins en moins, les pratiques et comportements (Lave et Lave, 1991; Terpstra, 2011). La gestion institutionnelle du risque repose non plus sur une adaptation comportementale mais sur une mise en sécurité des biens et des personnes par une autorité considérée comme légitime et responsable. L'instauration de Plans de prévention des risques d'inondation repose sur une stricte logique de zonage et encadre la construction de logements. De même, l'édification, même très onéreuse, d'infrastructures sécurisées, telles que des ponts, est préférée aux passages à gué qui supposent une adaptation des comportements individuels aux variations de débit du cours d'eau. Les habitants des villes prennent ainsi l'habitude de se tourner vers les autorités pour sécuriser, aménager, entretenir, voire concevoir leurs habitats.

La frange périurbaine : une marge de manœuvre à l'écart des regards?

Pour Henri Lefebvre, la ville est, certes, une centralité mais elle est, d'abord, une appropriation par l'usage. Elle est « lieux de rencontres et d'échanges, aux rythmes de vie et emplois du temps permettant l'**usage**⁶ plein et entier de ces moments et lieux, etc. [...] La ville et [la] vie quotidienne dans la ville deviennent œuvre, **appropriation**, valeur d'usage (et non valeur d'échange) » (Lefebvre, 1968). L'intégration des mécanismes de la production de la ville dans l'économie de marché mondialisée se traduit pour lui par le triomphe de la valeur d'échange sur la valeur d'usage. Dans la perspective de mise en compétition des territoires par les acteurs de l'économie mondialisée, le dessein urbain effacerait ainsi la valeur d'usage particulière à chaque lieu pour la généralisation d'une valeur d'échange pour au moins une partie des individus composant la population urbaine.

^{6.} Souligné par Henri Lefebvre.

Porteuses de moins d'enjeux, moins visibles par le pouvoir, souvent négligées dans le dessein urbain, les franges urbaines offrent peut-être l'avantage d'une réaffirmation des valeurs d'usage de l'espace. En effet, comme les pieds des remparts de la citadelle sont dans l'angle mort de ceux qui veillent et défendent le pouvoir en place, les franges périurbaines ne sont pas sous le regard du pouvoir, davantage préoccupé à surveiller l'horizon où se positionnent les concurrents ou les espaces à organiser autour de la recherche de gains de performances. Marges des centres, intermédiaires entre deux espaces aux fonctions clairement identifiées, les franges périurbaines peuvent s'envisager comme des espaces de relative liberté.

Dénuées des ressources les plus recherchées par les principaux acteurs de la gouvernance urbaine, parce qu'elles ne peuvent être englobées dans les approches de la ville durable telle qu'elle s'est définie depuis une vingtaine d'années, parce que leur valeur symbolique est faible et que la plupart des acteurs publics comme privés n'y accordent qu'une attention modeste, nous pouvons faire l'hypothèse que les franges périurbaines offrent un cadre sans doute moins normé que les centres urbains.

Les combinaisons de ressources offertes par les franges périurbaines en font de possibles lieux d'accueil. Au-delà de leurs singularités morphologiques, ces franges périurbaines peuvent ainsi constituer, pour différentes populations, des lieux privilégiés de mises à l'écart, mises à l'écart subies ou mises à l'écart choisies. Lieu de résidence pour des populations aisées qui y recherchent les aménités de la campagne tout en restant définitivement en ville, lieu de refuge pour des populations plus fragiles qui ne peuvent se loger en centre-ville ou dans les faubourgs.

A la façon des marges d'un cahier, ces espaces peuvent alors être des lieux où s'essaient différentes initiatives. Moins structurées que les cœurs de ville, elles pourraient être le lieu de pratiques habitantes originales exploitant à la fois les différentes ressources disponibles mais aussi les degrés de liberté offerts par cette position de bordure. L'originalité des configurations et des dynamiques spatiales et sociales de ces franges périurbaines n'a pourtant que peu été étudiée. C'est pourtant peut-être dans ces espaces de marge que des initiatives sont possibles, que des nouvelles territorialités se construisent, que s'esquissent des formes de résistance aux dynamiques d'urbanisation et d'assujettissement. C'est peut-être dans ces lieux que l'on peut observer de nouvelles urbanités.

MARGINALISATION, RÉSISTANCES ET INNOVATIONS DANS LES FRANGES PÉRIURBAINES : ILLUSTRATIONS EN FRANCE MÉTROPOLITAINE

À partir d'exemples empruntés à différents terrains de France métropolitaine, cet ouvrage questionne ces franges périurbaines. Les espaces étudiés sont situés

Marginalisations, résistances et innovations dans les franges périurbaines

20

en région parisienne (Grésillon, Amat et Kneur; Raymond, Noël, Fourault-Cauët et Darly), région lyonnaise (Faburel et Girault) en bord de Loire (Sajaloli), aux abords de Toulouse (Michon et Loudier-Malgouyres) ou de Bayonne (Bouisset et Degrémont). Les franges étudiées au sein de cet ouvrage apparaissent hétérogènes, tout d'abord quant à leur localisation (voir figure 1).

Conception et réalisation : DARLY, 2019.

Ainsi, certaines des études proposées renvoient à des espaces de marges situés au cœur même des pôles urbains mais singuliers par leur paysage. Celui-ci peut être non bâti comme c'est le cas du bois de Vincennes, scruté par Étienne Grésillon, Jean-Paul Amat et Océane Kneur. Il peut aussi laisser apparaître des constructions plus ou moins précaires comme dans le cas des Ecossolies, site

d'économie sociale et solidaire au cœur de l'île de Nantes, mais utilisant des usines désaffectées, étudié par Valérie Billaudeau et Arnaud de Lajartre. Il peut encore se distinguer par une densité moindre qu'au cœur des agglomérations comme à Tassin-la-Demi-Lune, commune de l'agglomération lyonnaise évoquée par Guillaume Faburel et Mathilde Girault. Par leur forme, et leur localisation au sein des agglomérations, cette première forme de frange peut faire figure d'enclave. Les échanges de ces franges avec le reste du pôle urbain, que l'on raisonne en termes d'emploi ou de pratiques habitantes, peuvent apparaître facilités par la proximité physique avec le centre. Pour autant, ces franges internes sont à l'écart des dynamiques métropolitaines. Cette mise à l'écart, ressentie par l'ensemble des acteurs, peut être choisie ou subie, entretenue ou combattue. Faisant figure d'espaces plus ou moins sanctuarisés face à la croissance urbaine du fait des risques qui les affectent - comme c'est le cas sur les bords de Loire ou d'un statut foncier inaliénable - cas manifeste du bois de Vincennes -, ces franges internes apparaissent singulières, espaces de faibles densités appropriés par des populations particulièrement précaires ou marginalisées.

Plusieurs des textes renvoient à une autre catégorie de franges, davantage localisées en bordure des agglomérations voire en bordures périurbaines. Parfois définies comme des « fronts » urbains, dans une lecture renvoyant à un étalement jugé néfaste, ou a contrario appréhendées autour du terme de « lisière », davantage évocateur, notamment pour les acteurs locaux, d'une articulation choisie entre espaces bâtis et espaces ouverts environnants. Ces franges se distinguent en premier lieu par l'éloignement physique aux centres urbains dont elles dépendent. Moins denses du point de vue de l'habitat, ces franges se singularisent par une plus grande disponibilité foncière que les franges internes précédemment évoquées. Elles se différencient également par une relation à la réalité urbaine plus ambiguë : ces franges, très diverses socialement, connaissent des processus partiellement contradictoires, notamment entre construction progressive d'espaces publics, les attachant progressivement à la ville, et définition de nouveaux espaces communs, répondant aux attentes d'activités de loisirs en contexte de nature dans les bordures des villes. Les études effectuées par Perrine Michon et Céline Loudier-Malgouyres dans plusieurs communes périurbaines de Toulouse illustrent ces articulations complexes. L'attachement à des paysages ruraux peut y être marqué, et le maintien d'un statut de limite avec le monde rural revendiqué comme le montrent les exemples landais de Labenne et Labenne-Océan, analysés par Christine Bouisset et Isabelle Degrémont. De même, la peur perceptible d'une hypothétique construction future transparaît chez certains habitants des franges périurbaines parisiennes, attachés à l'ouverture sur l'horizon offerte par les grandes cultures... alors même que leurs voisins peuvent n'y accorder aucune attention comme le découvrent Richard Raymond, Blandine Noël,

Marginalisations, résistances et innovations dans les franges périurbaines

22

Véronique Fourault-Cauët et Ségolène Darly. D'un point de vue morphologique, ces franges peuvent apparaître ressortir davantage de la ligne que de l'enclave. Plus ou moins épaisses et poreuses, présentant une grande diversité morphologique, elles se distinguent du fait urbain, mais aussi de l'espace rural, et font l'objet d'un questionnement explicite de leurs usagers quant à leur statut, leur insertion ou leur retrait de l'espace urbain. En parallèle, leur appartenance aux paysages ruraux est également interrogée par les habitants.

On le voit, l'ensemble des textes proposés dans cet ouvrage suggère d'interroger non seulement la diversité géographique des franges urbaines françaises, mais aussi la diversité des pratiques habitantes qui s'y exercent. Ces espaces à l'écart de l'urbain et du rural peuvent apparaître comme des lieux de marginalisation où des populations en grande difficulté sociale viennent trouver refuge. Ce sont aussi des lieux d'opportunité où certains trouvent des ressources nécessaires pour des activités difficiles à déployer en ville. Ce sont encore des lieux de résistance où des populations revendiquent un droit à la différence face aux dynamiques d'uniformisation. Ceci se traduit parfois par des formes de défense d'un cadre de vie original investi par des individus partageant les mêmes valeurs ou les mêmes modes de vie. Mais ce sont surtout des territoires où s'inventent de nouvelles formes de régulations sociales, plus informelles que celles, très normalisées, des espaces urbains. Ce sont de nouveaux lieux de sociabilités, locales ou publiques, qui ont « des formes et des fonctionnements spécifiques, qui les distinguent et les démarquent de celles et ceux hérités de la ville dense » comme le notent les géographes Perrine Michon et Céline Loudier-Malgouyres. Ces franges périurbaines sont des lieux où s'essaient de nouveaux rapports à l'espace habité qui transcendent les normes urbanistiques et aménagistes. De nouvelles formes de territorialités sont esquissées, inventées et expérimentées (Grésillon, Amat et Kneur; Michon et Loudier-Malgouyres; Sajaloli; Raymond, Noël, Fourault-Cauët et Darly; Faburel et Girault). Ces territoires apparaissent ainsi comme de formidables laboratoires où des innovations apparaissent, où de véritables formes de transitions se mettent en place. Mais ce sont aussi de formidables laboratoires pour l'analyse des articulations souvent complexes entre marges sociales et spatiales. Ce faisant, ces études de cas permettent de mettre en évidence les territorialités multiples des franges urbaines, entendues comme les sentiments d'appropriation complexes de ces lieux, appréhendés en contrepoint des normes et représentations des espaces urbains.

Entre hypermobilité métropolitaine et désir d'ancrage, les franges urbaines et périurbaines étudiées offrent des ressources sociales et spatiales pour différentes populations. Souvent pensés comme présentant une moindre urbanité, celle-ci étant entendue comme caractéristique de la ville combinant densité et diversité (Lévy et Lussault, 2013), les habitants des franges étudiées apparaissent *a contrario*

profiter de la faiblesse relative des normes urbaines qui les régissent pour établir des formes de territorialités et de modes d'habiter originaux, marqués à la fois par des processus de mise à l'écart ou de marginalisation mais aussi par des formes de résistances et d'innovations.

Références bibliographiques

- ABRAM Simone, 2007, « Participatory Depoliticisation: The Bleeding Heart of Neo-Liberalism », in Catherine NEVEU (dir.), Espace public et engagement politique. Enjeux et logiques de la citoyenneté locale, Paris, L'Harmattan, p. 113-133.
- AMAR Georges, 2010, Homo mobilis, le nouvel âge de la mobilité, Paris, FYP.
- BACQUÉ Marie-Hélène et LÉVY Jean-Pierre, 2009, « Ségrégation », *in* Jean-Marc STÉBÉ et Hervé MARCHAL (dir.), *Traité sur la ville*, Paris, Presses universitaires de France, p. 303-352.
- BARRA Marc, 2015, La biodiversité grise : concept et applications, Paris, Natureparif.
- BARLES Sabine, 2002, « Le métabolisme urbain et la question écologique », Les annales de la recherche urbaine, n° 92, p. 143-150.
- BAUER Gérard et ROUX Jean-Michel, 1976, La Rurbanisation, ou la ville éparpillée, Paris, Le Seuil.
- BÉAL Vincent, 2011, « Ville durable et justice sociale. Ce que le développement durable nous dit de la production de l'urbain », in Vincent BÉAL, Mario GAUTHIER et Gilles PINSON (dir.), Le développement durable changera-t-il la ville? Le regard des sciences sociales, Saint-Étienne, Presses universitaires de Saint-Étienne, p. 239-259.
- BERGER Martine, 2004, Les Périurbains de Paris. De la ville dense à la métropole éclatée, Paris, CNRS Éditions, coll. « Espaces et milieux ».
- BERGER Martine, ARAGAU Claire et ROUGÉ Lionel, 2014, « Vers une maturité des territoires périurbains. Développement des mobilités de proximité et renforcement de l'ancrage dans l'Ouest parisien », *Echogéo*, nº 27, [http://echogeo.revues.org/13683].
- BERQUE Augustin, 2007, « Qu'est-ce que l'espace de l'habiter? », *in* Thierry PAQUOT, Michel LUSSAULT et Chris YOUNÈS (dir.), *Habiter, le propre de l'humain*, Paris, La Découverte, p. 53-67.
- BLONDIAUX Loïc et SINTOMER Yves, 2009, « L'impératif délibératif », Rue Descartes, nº 63, p. 28-38.
- BOLTANSKI Luc, 2009, De la critique. Précis de sociologie de l'émancipation, Paris, Gallimard.
- BONNEUIL Christophe et FRESSOZ Jean-Baptiste, 2013, L'événement Anthropocène. La Terre, l'histoire et nous, Paris, Le Seuil, coll. « Anthropocène ».
- BONNIN-OLIVEIRA Séverine, 2013, « La fin des périphéries urbaines », *EspacesTemps. net*, [http://www.espacestemps.net/articles/la-fin-des-peripheries-urbaines].

- BOURDEAU-LEPAGE Lise, HURIOT Jean-Marie et PERREUR Jacky, 2009, « À la recherche de la centralité perdue », *Revue d'économie régionale et urbaine*, n° 3, juillet, p. 549-572.
- BOUTEFEU Emmanuel, 2007, « Végétaliser les villes pour atténuer les îlots de chaleur urbains », *Techni. Cités*, nº 129, p. 20-21.
- BÜLHER Eve-Anne, DARLY Ségolène et MILIAN Johan, 2015, « Arènes et ressources du droit au village : les ressorts de l'émancipation dans les campagnes occidentales au XXI^e siècle », *Justice spatiale* | *Spatial Justice*, nº 7, janvier.
- CANTAT Olivier, 2004, « L'îlot de chaleur urbain parisien selon les types de temps », Norois environnement, aménagement, p. 75-102.
- CHARMES Éric, 2011, La ville émiettée. Essai sur la clubbisation de la vie urbaine, Paris, Presses universitaires de France.
- CHARTIER Denis et RODARY Estienne (dir.), 2016, Manifeste pour une géographie environnementale. Géographie, écologie et politique, Paris, Les Presses de Sciences Po, coll. « Développement durable ».
- CHOAY Françoise, 1994, « La mort de la ville et le règne de l'urbain », in Jean DETHIER et Alain GUIHEUX (dir.), La Ville : art et architecture en Europe, 1873-1993, Paris, centre Georges Pompidou, p. 26-35.
- CUSIN François, LEFEBVRE Hugo et SIGAUD Thomas, 2016, « La question périurbaine. Enquête sur la croissance et la diversité des espaces périphériques », *Revue française de sociologie*, vol. 57, n° 4, p. 641-679.
- FABUREL Guillaume, 2018, Les métropoles barbares. Démondialiser la ville, désurbaniser la terre, Paris, Le passager clandestin.
- FONTES-ROUSSEAU Camille et JEAN René, 2015, « Utilisation du territoire. L'artificialisation des terres de 2006 à 2014 : pour deux tiers sur des espaces agricoles », *Agreste Primeur*, nº 326, [http://agreste.agriculture.gouv.fr/IMG/ pdf/primeur326.pdf].
- GUILLUY Christophe, 2014, La France périphérique, Paris, Flammarion.
- HALFACREE Keith, 2007, « Trial by Space for a "radical rural": Introducing alternative Localities, Representations and Lives », *Journal of Rural Studies*, vol. 23, n° 2, p. 125-141.
- HARVEY David, 1985, *The Urbanization of Capital*, Baltimore, John Hopkins University Press.
- HARVEY David, 2008, Géographie de la domination, Paris, Les prairies ordinaires.
- HOCHEDEZ Camille et LE GALL Julie, 2015, « Quel accès des urbains issus des "Suds du Nord" à la campagne? L'éducation aux ressources agricoles, un instrument pour connecter les marges urbaines défavorisées aux espaces productifs proches et aller vers davantage de justice alimentaire », communication au colloque international « Villes et campagnes en relations. Regards croisés Nords/Suds », LABEX DynamiTe, Paris, 9-11 juin 2015.

- 25
- LAVE Tamara Rice et LAVE Lester B., 1991, « Public Perception of the Risks of Floods: Implications for Communication », *Risk Analysis*, vol. 11, n° 2, p. 255-267.
- LEFEBVRE Henri, 1968, Le Droit à la ville, Paris, Anthropos/Le Seuil, coll. « Points », 2^e édition.
- LEFEBVRE Henri, 1970, La Révolution urbaine, Paris, Gallimard, coll. « Idées ».
- LEJEUNE Caroline et VILLALBA Bruno, 2015, « La justification durable comme extension du productivisme. Le Grand prix national des EcoQuartiers, la zone de l'Union (Nord, France) », *in* Jérôme BOISSONADE et Katja HACKENBERG (dir.), *Sociologie des approches critiques du développement et de la ville durables*, Paris, Petra.
- LEVY Jacques et LUSSAULT Michel, 2013, Dictionnaire de la géographie et de l'espace des sociétés, Paris, Belin.
- LUSSAULT Michel, 2007, L'homme spatial, Paris, Le Seuil.
- MASSON Valéry, 2010, « Micro-climat urbain. La ville dans les mailles du modèle », *Météo le Magazine*, nº 9, p. 10-12.
- MATHIEU Nicole, 2004, « Habiter le dedans et le dehors : la maison ou l'Eden rêvé et recréé », *Strates*, nº 11, p. 267-288.
- MATHIEU Nicole, 2007, « L'évolution des modes d'habiter : un révélateur des mutations des sociétés urbaines et rurales », *in* Yves LUGINBÜHL (dir.), *Nouvelles urbanités, nouvelles ruralités en Europe*, Bruxelles/Bern/Berlin/Frankfurt am Main/New York/Oxford/Wien, Peter Lang, p. 25-45.
- MATHIEU Nicole, BLANC Nathalie, GAJEWSKI Philippe, GRÉSILLON Lucie, HEBERT Florent, HUCY Wandrille, MOREL-BROCHET Annabelle et RAYMOND Richard, 1996, « Rural et urbain : unité et diversité dans les évolutions des modes d'habiter », *in* Marcel JOLLIVET et Nicole EIZNER (dir.), *L'Europe et ses campagnes*, Paris, Presses FNSP.
- MENDRAS Henri, 1977, « Bauer Gérard, Roux Jean-Michel, La rurbanisation ou la ville éparpillée [compte rendu] », Revue française de sociologie, 18 (1), p. 147-149.
- MORGAN Kevin et SONNINO Roberta, 2010, « The urban Foodscape: world Cities and the new Food Equation », *Cambridge Journal of Regions, Economy and Society*, 3 (2), p. 209-224.
- PAQUOT Thierry, 1990, Homo urbanus : Essai sur l'urbanisation du monde et des mœurs, Paris, éditions du Félin.
- PAQUOT Thierry, 2006, Terre urbaine. Cinq défis pour le devenir urbain de la planète, Paris, La Découverte.
- POULOT Monique, 2013, « Du vert dans le périurbain », *EspacesTemps.net*, [http://www.espacestemps.net/articles/du-vert-dans-le-periurbain/].
- POULOT Monique, 2014, « L'invention de l'agri-urbain en Île-de-France. Quand la ville se repense aussi autour de l'agriculture », *Géocarrefour*, 89/1-2, [http://geocarrefour.revues.org/9363].

- PUMAIN Denise et SAINT-JULIEN Thérèse, 1976, « Fonctions et hiérarchie des villes françaises », Annales de géographie, p. 385-440.
- PUMAIN Denise et SAINT-JULIEN Thérèse, 1978, Les dimensions du changement urbain, Paris, CNRS Éditions.
- RAFFESTIN Claude, 1986, « Territorialité : Concept ou paradigme de la géographie sociale ? », *Geographica Helvetica*, nº 2, p. 91-96.
- RANCIÈRE Jacques, 2005, La Haine de la démocratie, Paris, La Fabrique.
- RAYMOND Richard, BERINGUIER Philippe, BONIN Sophie, DARLY Ségolène, DERIOZ Pierre, FOURAULT-CAUËT Véronique *et al.*, 2015, « Les paysages des franges périurbaines, transitions ou parois de verre? », *in* Yves LUGINBÜHL (dir.), *Biodiversité, paysage et cadre de vie, la démocratie en pratique*, Paris, Victoires édition, p. 71-89.
- RAYMOND Richard, LUGINBÜHL Yves, SEGUIN Jean-François, CEDELLE Quentin et GRARE Hélène, 2015, *Les Atlas de paysages. Méthode pour l'identification, la caractérisation et la qualification des paysages*, Paris, éditions du ministère de l'Écologie, du Développement durable et de l'Énergie.
- ROUGÉ Lionel, 2005, « Les "captifs" du périurbain : Voyage chez les ménages modestes installés en lointaine périphérie », *in* Guénola CAPRON, Hélène GUETAT et Geneviève CORTES (dir.), *Liens et lieux de la mobilité*, Belin, coll. « Mappemonde », p. 129-144.
- ROUGÉ Lionel, 2012, « Retour dans les espaces de la "captivité périurbaine" : diversification des parcours de vie et affirmation de logiques d'autonomisation », *Sud-Ouest européen*, n° 31, p. 43-53.
- ROUGÉ Lionel (dir.), 2013, Réhabiliter le périurbain, comment vivre et bouger durablement dans ces territoires ?, Paris, Loco.
- SAINTENY Guillaume, 2008, « L'étalement urbain », *Responsabilité et environnement*, n° 49, p. 7-16.
- SAJALOLI Bertrand, 2016, « La marge rurale, épicentre de la contestation et laboratoire de l'innovation sociale », *in* Étienne GRÉSILLON, Frédéric ALEXANDRE et Bertrand SAJALOLI (dir.), *La France des marges*, Paris, Armand Colin, p. 412-419.
- SAKHY Ariane, 2016, Îlots de chaleur et morphologie urbaine de l'agglomération parisienne. Conséquences sur la mortalité durant la canicule de 2003, thèse de doctorat sciences de l'homme et société, université Paris Diderot, Sorbonne Paris Cité.
- SCOTT Allen J., 2012, A World in Emergence: Cities and Regions in the 21st Century, Cheltenham, Edwar Elgar.
- STÉBÉ Jean-Marc et MARCHAL Hervé, 2014, La sociologie urbaine, Paris, Presses universitaires de France.
- STORPER Michael, 2013, Keys to the City: How Economics, Institutions, social Interaction and Politics Shape Development, Princeton, Princeton University Press.

- 27
- TERPSTRA Teun, 2011, « Emotions, Trust and perceived Risk: affective and cognitive Routes to flood preparedness Behavior », *Risk Analysis*, vol. 31, issue 10, p. 1658-1675.
- VILLALBA Bruno, 2016, « Temporalités négociées, temporalités prescrites L'urgence, l'inertie, l'instant et le délai », *in* Bernard HUBERT et Nicole MATHIEU (dir.), *Interdisciplinarités entre Natures et Sociétés*, Bruxelles, Peter Lang, p. 89-109.

© Presses universitaires de Rennes Ce document est réservé à un usage privé Il ne peut être transmis sans autorisation de l'éditeur .

CONCLUSION

Camille NOÛS

L'ensemble des contributions de cet ouvrage nous apporte de nombreux éléments de réponse à la question centrale que nous avions formulée en ouverture : « Se met-on à l'écart dans les franges pour y trouver des réponses à la crise urbaine ? » Chaque terrain présente des réponses à cette question particulière. Les questions posées suivent une entrée spécifique et nous permettent de mettre en lumière dans un même volume différentes figures de l'écart et leurs territoires d'ancrage qui, bien qu'ayant en commun une situation en frange, reflètent la diversité des réalités et des échelles que ce terme recouvre : lisières ou enclaves forestières (ensemble des contributions), limites de la ville (Raymond *et al.*, Billaudeau *et al.*), zone inondable (Sajaloli), communes périurbaines (Michon et Loudier-Malgouyres, Faburel *et al.*). Dans ces contextes, les écarts sont mesurés dans les différents plans des modes d'habiter les lieux, qui relèvent aussi bien des choix d'organisation des espaces domestiques, économiques ou encore des espaces publics.

Les auteurs ont par ailleurs tous choisi de partir des usagers/habitants, de leurs actions et discours sur et dans ces franges, première étape permettant de rendre leur histoire (et leur géographie) à des territoires réduits dans les grands récits urbains au statut de sous-produit du processus de croissance des villes. Ils se placent ainsi au niveau de l'« infrapolitique de l'habiter » (Faburel et al.) et font un pas de côté par rapport aux représentations et théories classiques de la production de l'espace urbain. Dans cette perspective, les analyses de documents de planification et le recueil de la parole d'acteurs par entretien restent un moyen largement partagé de recueil de données. Les modalités de ce recueil ont cependant été testées dans leurs multiples variantes allant de l'observation des pratiques et des traces ou de « l'entretien informel » réalisé au hasard de rencontres sur la lisière (Raymond et al.) jusqu'aux « tables rondes citoyennes » en salle, à la fois exploratoires et prospectives (Faburel et Girault) en passant par les plus classiques « entretiens qualitatifs » (Billaudeau et al.). Le recueil de paroles comme principale source de données de terrain présente cependant certaines limites au regard de l'objet qui nous intéresse. S'intéresser aux écarts, c'est aussi souvent s'intéresser à des pratiques et des lieux peu représentés, perçus et connus essentiellement par ceux qui les

Marginalisations, résistances et innovations dans les franges périurbaines

144

façonnent. Trouver des « prises » dans ces groupes sociaux à/de l'écart, observer des usages temporaires et spontanés (hors cadres normatifs de l'espace aménagé) sont autant de difficultés auxquelles les contributeurs de cet ouvrage ont dû répondre en forgeant des méthodes d'observations empruntant à la fois à l'ethnologie et l'écologie. L'exploitation de données photographiques et la tenue de carnets de terrain prennent alors une place tout aussi importante que l'entretien lorsqu'il s'agit d'aborder des modes d'habiter marginaux et/ou fugaces. Cette phase d'observation est notamment présentée comme une démarche centrale pour « s'affranchir des grilles de lecture traditionnelles de l'espace public » (Michon et Loudier-Malgouyres) et leur donner « un sens nouveau où s'intriquent les usages individuels et collectifs » (Grésillon et al.). « La recherche et l'observation des traces laissées par les diverses activités » répondent au souci d'« accorder la même attention aux pratiques formelles et informelles, licites ou illicites, dicibles ou indicibles » (Raymond et al.) et permettent la définition de méthodes reproductibles, comme la formalisation d'indicateurs (Sajaloli) dans une perspective d'analyse quantitative ou comparative. Elle permet de surcroît, lorsqu'elle donne lieu à plusieurs campagnes sur le terrain « de créer une certaine confiance avec les habitants », précaution nécessaire lorsque l'on s'adresse « à des populations fragiles » (Sajaloli). En ce sens, les textes proposés font écho à nombre de travaux qui appréhendent des pratiques diffuses, marginales voire transgressives ou illicites par le biais d'indices matériels fragiles (Leroy, 2012; Germaine et al., 2017), parfois en complément d'entretiens avec les habitants et usagers de ces franges (de Certeau et al., 1990; Frileux, 2013; Lion, 2014).

Les textes de cet ouvrage, en combinant recueil de paroles et données d'observations, constituent un matériau riche que nous proposons de mettre en dialogue pour tirer une grille de lecture des liens entre mise à l'écart, volontaire ou non, et crise urbaine. Ce dialogue fait émerger trois grands rapports dialectiques qui structurent cette grille.

Le premier est celui des tensions entre normalisation des modes d'habiter nécessaire au déploiement de l'urbain généralisé et les résistances individuelles à ces normes. Les franges sont en effet décrites et perçues comme des lieux propices au pas de côté face à la « fuite en avant » des modes de vie métropolitain (Faburel et Girault). Les propos recueillis évoquent une « bouffée d'oxygène » (Bouisset *et al.*) qui renvoie à l'image de « lieux de refuge » (Sajaloli) où deviendrait possible le « soulagement des corps après une expérience de l'urbain dense vécue comme [...] stressante, [...] asservissante, [...] épuisante » (Faburel et Girault). Ces constats forgent la figure de la frange *soupape*, actionnée par des individus sous tension et sans laquelle leur maintien au sein du système (et donc le maintien de système lui-même) semble remis en question. Mais la position d'entre-deux de la frange est aussi propice à la figure de la frange *sas d'entrée*. On y trouve en effet facilement les ressources pour récréer des conditions proches de la norme mais assez souples pour être accessibles à ceux que la société

a écartés et qui se trouvent en situation d'extériorité à la norme de l'urbain généralisé. C'est par exemple le cas des nouveaux espaces publics du périurbain, lieux de sociabilités multi-scalaires sur lesquelles « les périurbains fondent leurs espoirs d'ancrage local » (Michon et Loudier-Malgouyres). C'est aussi le cas des périphéries urbaines investies par l'économie sociale et solidaire où cette dernière « contribue volontairement à la fabrique de paysages normalisés dont la standardisation contribue à l'insertion sociale des usagers comme de la structure même » (Billaudeau *et al.*). Dans un autre registre, Grésillon propose de s'appuyer sur le paysage des campements dans le bois de Vincennes pour « considérer le SDF comme initiateur de sa propre réinsertion » (Grésillon *et al.*).

L'exploration dans le détail des modes d'habiter hors-norme, qui échappent aux normes fonctionnalistes de l'urbain généralisé, que nous évoquons ci-dessus fait par ailleurs apparaître une autre ligne de tension entre d'un côté des stratégies et agencements spatiaux dédiés à la protection de la tranquillité mais aussi la discrétion des usagers et d'un autre côté la recherche de nouveaux espaces de visibilité, supports de socialisations et marqueurs d'une différence assumée. Si la frange est un endroit où « on n'est pas dérangé et on dérange personne » (Raymond et al.), il faut bien entendu le relier à « l'importance du paysage » (Grésillon et al.) qui permet de se fondre dans le décor ou de revendiquer un cadre de vie original ou distinct de l'urbain en cours (Bouisset et al.) mais aussi au fait que c'est un espace discret où ces usages peuvent rester « tacitement ignorés » (Raymond et al.) des voisins, agents ou élus. C'est la figure de la frange masque. A l'inverse, la frange accueille aussi de nouvelles catégories d'espaces publics, plus spontanés, moins planifiés et/ou aménagés qu'en ville et qui témoigneraient « d'une aspiration commune à tisser d'autres rapports au lieu » (Faburel et Girault) exprimés par des habitants qui « révèlent à travers ces choix une recherche et un plaisir à "être-ensemble" » (Michon et Loudier-Malgouyres). C'est la figure de la frange en commun. Au-delà des dires d'acteurs, les observations de ces lieux de l'action « en commun » ou de « l'être-ensemble » révèlent la distance qui les sépare des représentations qu'en font les gestionnaires de l'espace et amènent tous les auteurs à interroger « la place de l'action du politique dans la construction de ces territoires en émergence » (Michon et Loudier-Malgouvres). Nous soulignerons ici en particulier les décalages observés entre l'échelle locale des pratiques observées et l'échelle métropolitaine des représentations de la frange qui n'attribuent de valeur symbolique qu'à certaines catégories d'espaces fortement idéalisés et qui ne semblent pouvoir exister qu'au prix d'une « (re) mise en ordre » esthétique et sociale (Michon et Loudier-Malgouyres, Raymond et al.). Ces lieux en décalage, parfois désertés des locaux, servent cependant de ressorts symboliques à l'économie urbaine locale des territoires (c'est le marketing territorial). Leur inégale répartition nous invite à les relier au processus de fragmentation socio-économique des territoires de la ville (diffuse).

Marginalisations, résistances et innovations dans les franges périurbaines

146

Enfin, une troisième ligne de tension apparaît en analysant, plus en détail encore, ce rapport aux normes. Ce regard doit beaucoup au travail de Franck Dorso. En se fondant sur l'analyse de franges urbaines d'Istanbul, F. Dorso (2012) élabore un schéma distinguant plusieurs statuts, et plus encore plusieurs niveaux de tension entre les pratiques de l'écart et leur rapport aux normes sociales et urbaines communément admises. Il établit une gradation quant aux écarts normatifs rencontrés, certains relevant d'une respiration, d'une mise à l'écart temporaire des temps, des lieux et des codes quotidiens sans s'y référer, tandis que d'autres comportements se comprennent au prisme des normes en vigueur, soit en les adoptant – et les adaptant, soit en les transgressant. Appliquée aux franges périurbaines étudiées ici, cette grille de lecture apparaît tout aussi pertinente et révélatrice, en faisant apparaître différents (non) rapports avec les conceptions urbaines dominantes.

Les franges urbaines constituent des réserves foncières dans le contexte métropolitain, mais comprenant des espaces aux représentations contrastées, depuis les bordures délaissées et mal vues de la France dite « périphérique », des espaces périurbains abritant ceux que l'on a parfois qualifiés de captifs (Rougé, 2005), jusqu'aux espaces privatisés, objets d'une forme de clubbisation (Charmes, 2011) par leurs acteurs. Paradoxalement, les pratiques de l'écart de ces différents groupes et au sein même de ceux-ci, renvoient pour beaucoup à des pratiques du « faire avec » ou du « faire contre », autrement dit à des positionnements qui font référence de manière plus ou moins claire aux normes et représentations urbaines, voire métropolitaines. Cette mise à distance de la ville et de son modèle apparaît plus ou moins recherchée, voire mise en discours par ses tenants. Habiter les franges peut être présenté comme une relégation par certains de ses occupants, ou comme un choix affiché par d'autres, mais dans l'immense majorité des cas, c'est un choix qui se conçoit et s'énonce « pour » ou « contre » un modèle urbain dominant. Pratiquer les franges va de même souvent être vécu par leurs usagers comme une défense contre le temps et l'espace urbain, moins souvent comme sa continuation. Néanmoins, ces figures de « l'avec » et du « sans » n'épuisent pas la variété des relations entretenues par les habitants des franges à ces espaces. En effet, la faiblesse de l'intégration matérielle à l'urbain et la fragilité des références métropolitaines en vigueur dans la plupart de ces bordures contribuent à en faire des espaces propices à la mise à l'écart pure et simple de la norme urbaine dominante.

Habiter une frange peu dense, cultiver des activités conçues comme rurales telles les plantations potagères, privatiser progressivement les espaces à proximité de son terrain avec l'accord tacite des voisins relèvent de pratiques qui, dans leur diversité, renvoient à une différenciation plus ou moins ressentie par rapport à un modèle urbain dominant à un instant donné. Cette entreprise créatrice de modes de régulation locale, peu verbalisés mais appuyés sur des processus d'ajustement continu entre voisins rappelle l'analyse proposée par l'anthropologue David Graeber (2014) : à partir d'une analyse historique fort documentée, cet auteur remet en question l'idée que le modèle démocratique serait une invention

uniquement hellène. Il souligne, et c'est ce qui nous intéresse ici, que les modes de régulations démocratiques ont sans doute vu le jour dans de nombreuses situations. Ces situations avaient en commun le fait d'être éloignées des centres de pouvoir. Les franges urbaines, espaces à distance des centres des pouvoirs métropolitains, apparaissent ainsi comme des espaces propices à l'émergence de ces formes de régulations pratiques; espaces propices à ces formes de régulations démocratiques jusqu'à leurs réinscriptions dans l'ordre urbain (Raymond *et al.*).

« Sans » attribut normatif aussi clair que d'autres composantes de la métropole, les franges seraient un lieu propice, voire plus propice que d'autres, à des activités en retrait, pensées indépendamment des références évoquées précédemment. Habiter les franges permet de se penser en dehors de toute référence, en privilégiant des activités pour elles-mêmes, sans les associer à une norme, qu'elle soit urbaine ou rurale. De ce point de vue, les propos d'habitants ayant grandi dans tel ou tel espace étudié (Raymond *et al.*) témoignent de l'existence d'un monde « en soi » qui leur permet ensuite de (ré)intégrer les normes sociales urbaines auxquelles ils sont soumis quotidiennement.

Ainsi, les diverses études de cas présentées dans cet ouvrage rendent compte des ruses, des « arts de faire » (de Certeau et al., 1980) à partir desquels les habitants composent leur mode d'habiter en détournant les produits de consommation urbaine. Un espace de loisir et de protection de la biodiversité devient espace de reconstruction personnelle (Grésillon et al.). Un espace inondable où les risques de submersion sont mis en équation, devient espace de refuge où les risques sont gérés finement à la fois dans le temps et dans l'espace (Sajaloli). Les espaces publics retrouvent leur fonction de sociabilité (Michon et Loudier-Malgouyres) faisant renaître ces tiers-lieux que la société de consommation standardisée a pu faire disparaître ailleurs (Olderburg, 1999). Les paysages hérités deviennent motif de différenciation et cristallisent une probable opposition à une assimilation à un modèle urbain homogène (Bouisset et al.). Des formes d'organisation politique apparaissent, marquant une prise de distance avec les logiques métropolitaines (Faburel et Girault). Dès lors, la question de la mainmise souhaitée sur ces franges apparaît centrale si l'on comprend la ville comme champ de forces, comme espace d'intégration, d'homogénéisation à un ordre établi. Par la multiplication des projets de lisière (Legenne, 2010; Bayle, 2011) à diverses échelles, les pouvoirs publics semblent aujourd'hui prendre la mesure de l'importance de ces franges pour maîtriser l'espace urbain, voire métropolitain. Si des documents techniques vantent les aménagements de ces espaces de frange comme devant permettre « d'offrir une qualité urbaine aux habitants », mais aussi « un élément de l'image, de l'attractivité de la ville » (Legenne, 2010), ces ambitions se traduisent concrètement par des formes de (re)mises en ordre peu compatibles avec certains usages et représentations antérieurs, à l'instar de ce qui existe dans les centres-villes (Fleury et Froment Meurice, 2014). Certes, la lisière mobilise souvent dans les discours toute une rhétorique du lien (entre ville et campagne, entre populations aisées et

populaires) et de valorisation réciproque, mais *in fine*, ces multiples projets ne sontils pas le signe d'un sens nouveau imposé sur ces espaces, dès lors moins propices à l'appropriation de chacun, à la respiration de ses habitants, sommés d'afficher plus explicitement leur intégration ou leur rejet de l'urbain et des injonctions à la ville durable qui accompagnent la croissance et l'étalement métropolitains.

Références bibliographiques

- BAYLE Christophe, 2011, « Les lisières, territoires d'innovation pour le Grand Paris », *Métropolitiques*, 20 avril 2011, [http://www.metropolitiques.eu/ Les-lisieres-territoires-d.html].
- CHARMES Éric, 2011, La ville émiettée. Essai sur la clubbisation de la vie urbaine, Paris, Presses universitaires de France.
- DE CERTEAU Michel, GIARD Luce et MAYOL Pierre, 1980, L'Invention du quotidien, tome 1 : Arts de faire, Paris, Le Seuil.
- DORSO Franck, 2012, « Pour une sociologie de l'écart. Affiliation et différenciation dans les processus de socialisation et d'urbanisation », *Nouvelles perspectives en sciences sociales*, vol. 8, n° 1, p. 35-59.
- FLEURY Antoine et FROMENT-MEURICE Muriel, 2014, « Embellir et dissuader : les politiques d'espaces publics à Paris », *in* Antoine DA CUNHA et Sandra GUINAND (dir.), *Qualité urbaine, justice spatiale et projet. Ménager la ville*, Lausanne, Presses polytechniques et universitaires romandes, p. 67-79.
- FRILEUX Pauline, 2013, Le bocage pavillonnaire. Une ethnologie de la haie, Paris, Créaphis éditions.
- GERMAINE Marie-Anne, TEMPLE-BOYER Élise, MILIAN Johan, FOURAULT-CAUËT Véronique et RAYMOND Richard, 2017, « La diversité des paysages des franges périurbaines : proposition d'indicateurs pour caractériser les espaces entre ville et campagne », *L'Espace géographique*, 46 (1), p. 19-40.
- GRAEBER David, 2014, La démocratie aux marges, Lormont, Le Bord de l'eau, coll. « La Bibliothèque du Mauss ».
- LEGENNE Corinne, ARBELBIDE LETE Leire, CHRISTIAN Thibault, TRICAUD Pierre-Marie et VIVIEN Jean-François (dir.), 2010, *Comment traiter les fronts urbains*?, Paris, IAU IdF, coll. « Carnets pratiques ».
- LEROY Stéphane, 2012, « "Tu cherches quelque chose ?" », *Géographie et cultures*, 83 | 2012, [http://journals.openedition.org/gc/2045], [DOI : 10.4000/gc.2045].
- LION Gaspard, 2014, « En quête de chez-soi. Le bois de Vincennes, un espace habitable? », *Annales de géographie*, 3, n° 697, p. 956-981, [https://www.cairn. info/revue-annales-de-geographie-2014-3-page-956.htm].
- OLDENBURG Ray, 1999, The great good Place: Cafés, Coffee Shops, Bookstores, Bars, Hair Salons, and other Hangouts at the Heart of a Community, Cambridge, Marlowe & Company.

6.3 EXPERTISE – RECHERCHE COLLABORA-TIVE

Les membres de l'équipe ESPP sont investis de différentes manières dans des recherches de type collaboratives qui peuvent également être assimilées à une activité d'expertise. Ces investissements illustrent leur attachement à mener des recherches qui soient en prise directe avec les enjeux sociétaux contemporains, en même temps qu'elles participent de la production de connaissances plus fondamentales. La crise environnementale et les moyens d'y faire face constitue l'élément de cadrage commun à ces activités. Mettre la production de connaissances scientifiques au service d'acteurs et d'organisations de droit public comme privé, tout en s'obligeant à la réflexion éthique qu'exige cette posture, constitue un trait d'union entre les membres du collectif ESPP et l'occasion pour le groupe de penser, ensemble, à la diversité des manières de pratiquer et produire aussi la science en société. Les exemples qui figurent ici illustre la diversité des formes prises par ces activités.

Anthropologie de la conservation et Expertise institutionnelle – Contribution à l'ESCO SHS sur les Loup et l'ESCO pluridisciplinaire sur les Lynx

Le MNHN est l'interlocuteur privilégié du Ministère de la Transition écologique (MTE) pour les saisines sur des questions de biodiversité en France, en particulier les problématiques autour des grands Carnivores. Ainsi, si l'expertise scientifique collective (ESCO) en 2013 sur l'Ours brun comportait un volet uniquement biologique, les suivantes se sont ouvertes aux SHS. En 2016, Richard Dumez, ethnoécologue, spécialiste en anthropologie de la conservation, a été mandaté par le Président du MNHN pour coordonner et piloter l'ESCO sur les aspects culturels, culturels et ethnologiques de la présence du loup en France. Il s'est appuyé sur une commission pluridisciplinaire en SHS de 8 experts et restitué en avril 2017 le rapport produit (32 recommandations) auprès du Ministère et aux membres du Groupe national Loup, réunissant des représentants des associations de protection de la nature et des organisations professionnelles agricoles. Fin 2021, R. Dumez a été sollicité par la Direction de l'Expertise du MNHN pour contribuer en amont à l'élaboration d'une nouvelle saisine du MTE sur les conditions de viabilité du Lynx en France, saisine actée en mars 2022. Dès le début, le parti a été pris d'une ESCO pluridisciplinaire en écologie et en SHS. Actuellement, avec N. Drouet-Hoguet (OFB), il co-pilote l'équipe projet (6 pers. en tout), qui agit en lien avec les co-présidents du panel d'experts et le comité de pilotage réunissant les 2 structures porteuses de l'ESCO (MNHN et OFB). Les missions de l'équipe projet sont d'organiser et de mettre en œuvre l'ESCO, de participer à l'animation du panel, de contribuer à l'état des lieux des connaissances en écologie et en SHS et à la production de données, d'élaborer les différents livrables en lien avec le comité d'experts et de gérer les relations avec les services des deux établissements (OFB et MNHN).

DUMEZ R., (coord.), ARPIN I., HUBERT A., LEGRAND M., LESCUREUX N., MANCERON V., MORIZOT B. & C. MOUNET, 2017. Expertise scientifique collective sur les aspects sociologiques, culturels et ethnologiques de la présence du loup en France. Expertise pour le Ministère de l'Environnement, de l'Énergie et de la Mer, Muséum national d'Histoire naturelle, Paris, 67 p. https://www.loupfrance.fr/wp-content/uploads/ESCO-Loup_20170331.pdf

Préservation de la biodiversité et patrimoines culturels associés aux insectes

Nicolas CÉSARD siège depuis 2016 avec une dizaine d'autres experts (naturalistes, chercheurs, gestionnaires...) au CA de l'Office pour les insectes et leur environnement (OPIE), une association nationale de protection de la nature et d'éducation à l'environnement spécialisée sur les insectes. Il y apporte son expertise sur leur étude, leur conservation et sur les relations que les hommes entretiennent avec les insectes, à travers notamment la rédaction d'articles scientifiques ou de vulgarisation. Dans cette même perspective, il a rejoint le comité de pilotage d'AR MELL, un institut dédié à la conservation et à la diffusion des connaissances sur l'abeille noire, l'abeille mellifère endémique d'Europe de l'Ouest, un engagement qui vient nourrir ses propres recherches sur la préservation des races à petits effectifs et sur les pratiques apicoles associées à cette espèce maintenue pour sa rusticité. Son expertise sur la place des insectes dans les cultures l'a conduit à rédiger avec des détenteurs de savoirs locaux et d'autres chercheurs (étudiants, linguistes, etc.) une fiche pour l'inventaire national du Patrimoine culturel immatériel (INPCI) sur la pratique de la chasse aux guêpes à La Réunion (rod lo gèp), ainsi que la révision de la fiche existante sur le rituel eputop (maraké) des amérindiens wayana de Guyane française.

A la recherche des nids de guêpes à La Réunion (mars 2022) © N. Césard. Logo Ar Mell © Ar Mell

« CastaCorse » : une recherche-action multipartenariale insulaire sur les chataigneraies de Corse

Vincent BATTESTI est à l'initiative, fin 2022, d'une recherche-action sur les châtaigneraies insulaires de Corse. Ce projet, qui conjuguent plusieurs disciplines (ethnoécologie, écologie et histoire), est réalisé en collaboration avec Franck RICHARD (CEFE, Université de Montpellier) et Denis JOUFFROY (LISA, Université de Corse) et avec l'étroite assistance du Conservatoire de botanique national de Corse de l'Office de l'environnement de la Corse. Financé directement par la Cullettività di Corsica et employant une doctorante (Doria BELLACHE), il implique également des producteurs (isolés ou membres du groupement des producteurs de châtaignes GRPTCMC) et le vivier des associations locales (en particulier de mycologie), ainsi que des élus locaux (mairies nord et sud) et des institutions comme l'INRAE de Corse, les chambres d'agriculture nord et sud, le syndicat AOP, l'Office du développement agricole et rural de Corse, l'ONF, le Parc naturel régional de Corse, etc. Ce projet propose de documenter et analyser sur cette île méditerranéenne l'arboriculture singulière du châtaignier (Castanea sativa Mill.), de façon diachronique et synchronique, à l'échelle du territoire de la Corse, les pratiques culturales qui lui sont liées, sa diversité génétique et la biodiversité associée ; L'un des enjeux est d'élaborer des outils d'aménagement du territoire et de relance et sauvegarde de ce socioécosystème insulaire.

Légende : Châtaignier victime d'un incendie devant la châtaigneraie sur les flancs du San-Petrone en Castagniccia (Corse), juillet 2017, Vincent Battesti.

Recherche-action « Habiter une Aire Protégée »

Richard RAYMOND participe, en collaboration étroite avec des acteurs et des habitants d'un territoire de la péninsule du Cotentin, à une opération de Recherche-Action centrée sur les modalités d'une cohabitation entre Humains et Biodiversité. Deux entrées permettent d'aborder la complexité des modes d'habiter ce territoire et l'articulation d'enjeux naturalistes et sociaux. Le premier est l'élevage d'une race à faible effectif, le Roussin de la Hague ; le second est la gestion conservatoire des landes littorales. Ces objets sont saisis comme éléments d'un socio-écosystème unique. Dans ce cadre, Richard RAYMOND apporte son expertise sur les processus en cours, son analyse pour expliciter des situations et dynamiques complexes. Cette implication se concrétise, d'un point de vue académique, par sa participation au Conseil Scientifique du Géoparc de La Hague et par la direction de deux projets de recherche financés, l'un par la Fondation de France, l'autre par la Fondation ENGIE. D'un point de vue opérationnel, si cette opération s'inscrit nécessairement dans le temps long et si elle n'en est qu'à ses débuts, elle alimente quelques actions concrètes : lancement de l'Opération Grand Site, révision du Document d'Objectif des landes littorales, concertation autour du schéma d'intentions paysagères du Nez de Jobourg.

Les enjeux des landes littorales : pâturage, conservation d'un habitat remarqué, tourisme, loisir, paysage. (Richard RAYMOND, La Hague, 2023)

Recherche collaborative pour l'innovation agroécologique

Julien Blanc collabore depuis 2019 avec une association d'agriculteurs dénommée « Systèmes agroécologiques en Limousin », membre de la Fédération Nationale des Centres d'Initiative et de Valorisation du Milieu Rural (FN-CIVAM). Des actions de recherches successives ont débouché sur production de matériaux à destination du groupe, formalisant des aspects de leur travail et de leurs expérimentations (pratiques productives, techniques de corps, production des conditions de l'attention, trajectoires des systèmes d'activités). Ces matériaux alimentent des journées d'échange dédiées dans le groupe et constituent la base d'une production écrite et audiovisuelle - destinée à circuler dans les réseaux associés. Elles matérialisent des "référentiels" et offre une visibilité et légitimité à ces pratiques "alternatives" porteuses d'innovations agroécologiques. L'un des gages de cette production - très distincte de ce qui se fait en agronomie ou en sociologie agricole - est le recours à une pratique de terrain immersive qui permet de saisir en finesse des situations et dynamiques spécifiques, d'en réaliser des analyses comparatives, très puis des formalisations, grâce aux méthodes et concepts propres à l'ethnoécologie.

SAEL : Faire groupe autour de la résilience agroécologique (crédits, Julien Blanc)