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3.1 Ly et al (2019) illustre bien notre démarche interdisciplinaire qui consiste a évaluer I'impact de
pratiques culturelles (ici les systéemes de parenté, comme la matrilinéarité) sur I'évolution de la
diversité génétique humaine. Cette étude est fondée sur des données génétiques et ethno-

démographiques collectées en Asie du Sud Est, I'un des terrains que nous avons développés.

Ly G, Laurent R, Lafosse S, Monidarin C, Diffloth G, Bourdier F, Evrard O, Toupance B, Pavard S, Chaix R. 2019. From matrimonial practices to
genetic diversity in Southeast Asian populations: the signature of the matrilineal puzzle. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 374:20180434. doi:10.1098/rstb.2018.0434

3.2 Fortes-Lima et al (2021) représente un autre aspect de notre recherche : la reconstruction de
I’histoire démographique des populations a partir de données génomiques grace a des méthodes bio-
informatiques de statistiques computationnelles basées sur des simulations, notamment

I’Approximate Bayesian Computation.
Fortes-Lima CA, Laurent R, Thouzeau V, Toupance B, Verdu P. 2021. Complex genetic admixture histories reconstructed with Approximate
Bayesian Computation. Molecular Ecology Resources 21:1098-1117. doi:10.1111/1755-0998.13325

3.3 Le plateau P2GM est un équipement mutualisé d’acquisition de données de génétique et de
paléogénétique moléculaires développé et coordonné par deux membres de notre équipe. Il est utilisé
par diverses équipes de 'UMR, du MNHN, et d’autres EPST. Il couvre une grande diversité de matériel
biologique : le bois des collections, prélevement non invasif des primates non humains, salive et sang
des humains modernes, ADN des plantes cultivés, I’ADN ancien humain et non humain.
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In matrilineal populations, the descent group affiliation is transmitted by
women whereas the socio-political power frequently remains in the hands
of men. This situation, named the ‘matrilineal puzzle’, is expected to pro-
mote local endogamy as a coping mechanism allowing men to maintain
their decision-making power over their natal descent group. In this paper,
we revisit this ‘matrilineal puzzle’ from a population genetics’ point of
view. Indeed, such tendency for local endogamy in matrilineal populations
is expected to increase their genetic inbreeding and generate isolation-by-
distance patterns between villages. To test this hypothesis, we collected
ethno-demographic data for 3261 couples and high-density genetic data
for 675 individuals from 11 Southeast Asian populations with a wide
range of social organizations: matrilineal and matrilocal populations (M),
patrilineal and patrilocal populations (P) or cognatic populations with pre-
dominant matrilocal residence (C). We observed that M and C populations
have higher levels of village endogamy than P populations, and that such
higher village endogamy leads to higher genetic inbreeding. M populations
also exhibit isolation-by-distance patterns between villages. We interpret
such genetic patterns as the signature of the ‘matrilineal puzzle’. Notably,
our results suggest that any form of matrilocal marriage (whatever the
descent rule is) increases village endogamy. These findings suggest that
male dominance, when combined with matrilocality, constrains inter-village
migrations, and constitutes an underexplored cultural process shaping
genetic patterns in human populations.

This article is part of the theme issue ‘The evolution of female-biased
kinship in humans and other mammals’.

1. Introduction

In matrilineal populations (which represent about 12—-17% of the world’s popu-
lations), descent group affiliation is transmitted through the mother, whereas in
patrilineal populations (about 45% of the populations), it is transmitted through
the father [1,2]. These descent systems are not the symmetrical opposite of each
other because, in both cases, authority and socio-political power (beyond the
household) lie in the hands of men [3-6]. Indeed, while women play key
Electronic supplementary material is available roles within the domestic unit in terms of provisioning, childrearing and house-
online at https://doi.org/10.6084/m9.figshare. hold organization, men are usually more empowered than women to control
.4526243. public sphere affairs [4,5,7,8]. Hence, it has been argued that matrilineal

THE ROYAL SOCIETY

PUBLISHING © 2019 The Author(s) Published by the Royal Society. Al rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0434&domain=pdf&date_stamp=2019-07-15
http://dx.doi.org/10.1098/rstb/374/1780
http://dx.doi.org/10.1098/rstb/374/1780
http://dx.doi.org/10.1098/rstb/374/1780
mailto:chaix@mnhn.fr
https://doi.org/10.6084/m9.figshare.c.4526243
https://doi.org/10.6084/m9.figshare.c.4526243
http://orcid.org/
http://orcid.org/0000-0003-1215-4608
http://orcid.org/0000-0002-8244-1824
http://orcid.org/0000-0002-6803-8123

societies are caught in what has been named by A. Richards as
a ‘matrilineal puzzle’ [5]. Indeed, in these populations, a man
has to conciliate his loyalties to his conjugal and to his natal
kin [8]: he is expected to exert, at the same time, his authority
of husband and father over his spouse and children, and his
authority of brother and uncle over his sisters and their children,
who are members of his own clan and to whom material and
immaterial forms of inheritance are transmitted. In addition,
by following the matrilocal residence rule that exists in 70% of
these matrilineal populations [2], men are supposed to move
out to settle with their wife, possibly in a different village.
The further away they marry, the more challenging it is for
them to exert their authority over their sisters and their
children. In addition, in these populations, the husband has to
share authority with his brothers-in-law and other men in
charge of his wife’s lineage or clan, thus generating the problem
of organizing relationships between the in-marrying husband
and the male members of his wife’s descent group [9].

The matrilineal puzzle has been discussed for over 60 years
by different schools of anthropologists. Recent works by evol-
utionary anthropologists have outlined the evolutionary
paradoxes of these matrilineal systems [10-12]. Indeed, in
these societies, frequently men invest more in their sisters’
children than in their own children, which violates the expec-
tation of Hamilton’s rule [13]. In addition, according to the
Trivers—Willard hypothesis, it would be more beneficial
for parents to transmit wealth to the sex that is most capable
of converting it into large reproductive success, typically
males [14]. The relative benefit of transmission to males over
females depends on the nature of heritable wealth. For
instance, livestocks and productive lands are both usually con-
sidered more beneficial to men than women because of their
greater impact on male’s capacity to acquire partners and to
increase their reproductive success [10,12]. More recently, the
matriliny as daughter-biased investment (MDBI) hypothesis
proposes that daughter-biased investment could be an adap-
tive strategy if the risk of paternity uncertainty (usually high
in matrilineal societies) outweighs the benefits of wealth trans-
mission to sons [15]. On the other hand, the expendable male
hypothesis suggests that the matrilineal puzzle may not be a
puzzle in the evolutionary sense at all, and proposes that
matriliny may emerge if females are capable of meeting the
subsistence needs of their families while males invest little
in children (their own, or their sisters’), this latter condition
reconciling these systems with Hamilton’s rule [7].

Here, we propose to come back to the original sense given
to the matrilineal puzzle by A. Richards and other structural-
functionalists [5,8], who were referring to the conflict in
authority, and in particular to the constant “pull-father-pull-
mother’s brother” stretch existing in these matrilineal
populations. Interestingly, through the study of many matrili-
neal populations, these anthropologists have described several
‘solutions” which may appease such tensions: (i) a handful of
these matrilineal populations do not follow the matrilocal resi-
dence rule but follow a duolocal residence rule—the husband
does not live with his wife but visits her regularly while staying
with his sisters [8,16]; (ii) more often, the residence rule is avun-
culocal with, for example, fraternal extended families exerting
full authority over the community, while men’s sisters are
loaned away to other communities and their children
are reclaimed at puberty [5,17]; (iii) in the case of the matrilineal
populations exhibiting a matrilocal residence rule, the eldest
brother may be exempted from such a rule, thus exerting his

authority over his sisters and their children [5,17]; (iv) in
addition, matrilateral cross-cousin marriages are frequent
in these populations, contributing to strengthen the authority
of men who have contracted matrilocal marriages—by marry-
ing their daughters to their sister’s sons, they bring in their
spouse’s village, their nephews as sons-in-law, who come
from their own descent group and natal village [5,18]; (v) finally,
a very frequent ‘solution” to the matrilineal puzzle is the strong
preference for local endogamy observed in these populations—
according to Murdock [19], 17 out of 24 matrilocal populations
(70%) were found to be endogamous (as opposed to only 7 out
of 101 patrilocal populations). This preference for marrying a
woman from the same village, or from a nearby village, may
allow men to stay close to the members of their maternal descent
group and to exert their authority as brothers/uncles over them,
as well as control their descent-group affairs.

In this study, we propose to explore the potential impact of
the matrilineal puzzle on the genetic evolution of these popu-
lations. A number of studies in the past 20 years have shown
that social organizations shape the uniparental genetic diversi-
ties of human populations [20-29]. Fewer studies have
explored the evolutionary implications of descent and resi-
dence rule on autosomal data [30—32]. Here, we propose to
focus on the matrilineal puzzle, whose impact on human
genetic diversity has been left untouched by population geneti-
cists. Our working hypothesis is that the preference for local
endogamy observed in matrilineal populations should increase
the genetic inbreeding level in these matrilineal populations, in
comparison to populations where such preference does not
exist, in particular populations with patrilineal descent.
Indeed, when local endogamy increases, we expect not only
the proportion of consanguineous marriages to be higher
(owing to the small size of the matrimonial market and its
enrichment in relatives), but also the genetic drift to increase,
both leading to higher genetic inbreeding [33]. In addition,
we expect such preference for marrying within the same vil-
lage, or in a nearby village, in matrilineal populations to
generate isolation-by-distance patterns between villages [34].
Such isolation-by-distance patterns are less expected in patrili-
neal populations, because there is weaker pressure for local
endogamy, leading to long distance gene flow.

To test such a hypothesis, we collected ethno-demographic
data for 3261 couples as well as high density autosomal single
nucleotide polymorphism (SNP) data for 675 individuals
from 11 mainland Southeast Asian populations exhibiting a
wide variety of social organizations, with different descent
and residence rules, but living in similar tropical environ-
ments and having similar lifestyles based on rice farming.
More precisely, we compared three populations (M) with
matrilineal descent and matrilocal residence (Jarai, Tampuan
and Kacho’), to four populations (P) with patrilineal descent
and patrilocal residence (Khmu’, Lamet, Ta-oih and Pacoh).
This dataset has been completed by four populations (C)
with cognatic descent and either matrilocal residence
(Khmer and Bunong) or multilocal residence with final settle-
ment in the wife’s village (Brao and Kreung). We grouped
these four cognatic populations into a single group of cogna-
tic populations with predominant matrilocal residence. These
populations were included to disentangle the effect of des-
cent from the effect of residence on migrations of men. In
particular, we investigated whether matrilocality by itself
could generate a similar level of constraint on male migration
as when it is associated with matrilineal descent. Indeed, it



may be that under any form of matrilocal marriage, and inde-
pendently of matrilineality, men find themselves, at least
initially, in a position of subjection in their wife’s village
(while possibly losing a position of leadership in their village
of origin) [5], a situation that can be lessened by marrying a
woman from the same village [6]. Consequently, in popu-
lations following a matrilocal residence rule but with
no matrilineal descent group (i.e. cognatic populations), we
could expect a similar preference for endogamous marriages
as in matrilineal populations. The populations under study
are presented in table 1 (their geographical location is shown
in electronic supplementary material, figure S1).

2. Results

(a) Estimation of village endogamy

We estimated the village endogamy rate (as a proxy for local
endogamy) for each population from ethno-demographic
information collected by the research team for 3261 couples
(figure 1). The village endogamy rate was defined as the pro-
portion of couples for which both spouses were born in the
same village. These rates were compared among social organ-
izations using a generalized linear mixed model. As expected
under the matrilineal puzzle hypothesis, village endogamy
was significantly higher in M than P populations (0.87 versus
0.73 respectively, p-value = 0.029). In C populations, village
endogamy was similar to M populations (0.84, p-value =
0.62) and higher than in P populations, although the difference
was not statistically significant (p-value = 0.066). This suggests
that the matrilocal residence rule alone (with no matrilineal
descent groups but cognatic descent) may generate a similar
level of constraints on migrations of men as when this residence
rule is associated with matrilineal descent. In addition, social
organization was estimated to explain 43% of the variance in
village endogamy rate among populations.

We observed variation in the village endogamy rate
within groups (electronic supplementary material, table S1).
In particular, the Kacho’ population had a significantly
higher village endogamy rate compared to the other M popu-
lations (Tampuan and Jarai). Among the P populations, the
Khmu' had a significantly higher village endogamy rate
than the Pacoh and Ta-oih. The Pacoh had significantly
lower village endogamy rate than the Khmu’ and Ramet.

(b) Estimation of inbreeding coefficients
We tested whether M and C populations exhibited higher
inbreeding levels in comparison to P populations as a result
of their higher village endogamy rate. The FEstim software in
the FSuite pipeline [35,36] was used to estimate the inbreeding
coefficient of each individual (figure 24) and to infer the genea-
logical relationship between the parents (parental mating type)
of each individual (electronic supplementary material, table
S2). M and C populations had similar mean inbreeding coeffi-
cients (0.018 and 0.017 respectively, p-value = 0.91, figure 2b),
and both had higher mean inbreeding coefficient compared
to P populations (0.011, both p-values < 0.05). In addition,
social organization was estimated to explain 27% of the
variance in inbreeding coefficients among populations.
Mating type inference showed that M populations had a
higher proportion of individuals whose parents were related
(90.2%: 77.7% of second cousins, 12.1% of first cousins, and

0.5% of double first cousins) compared to C populations n

(81.8%: 70.6%, 9.8% and 1.5% for the same mating types,
X test p-value = 0.012) and compared to P populations
(60.0%: 61.6% of second cousins, 7.6% of first cousins and
0.5% of avuncular relationship, p-value < 0.01, electronic
supplementary material, table S2). In addition, C populations
also had a higher proportion of individuals whose parents
were related compared to P populations (p-value < 0.01).

We observed variation within groups in terms of inbreed-
ing coefficient (figure 2 and electronic supplementary
material, table S3). In particular, the Kreung population had
a significantly higher inbreeding level than other C popu-
lations (F = 0.026 compared to 0.014 on average for the other
C populations). This may relate to the fact that their effective
size is lower (only significantly so compared to the Khmer)
than the effective population size estimated for the other cog-
natic populations (see table 1 and electronic supplementary
material , tables S4 and S5). In addition, the Khmu’ population
had a significantly higher inbreeding coefficient than other P
populations (F = 0.022 compared to 0.0067 on average for the
other P populations). Contrary to the case of the Kreung, this
does not seem to be linked to differences in effective population
size among P populations.

To further investigate the influence of village endogamy on
inbreeding level and confirm that village endogamy is the
social component that explains the differences in inbreeding
level between social organizations, we measured the corre-
lation coefficient between these two parameters at the
population level (figure 3). The village endogamy rate was
indeed significantly correlated with the inbreeding coefficient
(Spearman’s p = 0.73, p-value = 0.015).

(c) Isolation-by-distance patterns

Finally, we explored the patterns of isolation-by-distance at the
village level within each population (figure 4). We performed
this analysis in populations with at least four sampled villages
(after excluding villages with less than five sampled individ-
uals). This filtering step excluded the Kacho’, Kreung and
Ta-oih from this analysis. We observed significant isolation-
by-distance patterns in the two M populations included in this
analysis (Tampuan and Jarai, both p-values < 0.05). Among
the C populations, such isolation-by-distance pattern was
found in the Khmer (p-value = 0.034) but not in the Bunong
or Brao (both p-values>0.05). P populations did not
exhibit any significant isolation-by-distance pattern (all
p-values > 0.05).

3. Discussion

In this study, we observed that Southeast Asian matrilineal and
matrilocal populations (M), but also cognatic populations with
predominant matrilocal residence (C), have higher levels of
genetic inbreeding than patrilineal and patrilocal populations
(P). In addition, M populations exhibit isolation-by-distance
patterns between villages. We hypothesize that such findings
are the signature of the higher local endogamy resulting from
what has been called the ‘matrilineal puzzle’, which takes
root in the male dominance over socio-political power [5]: in
matrilineal and matrilocal societies men are supposed to
settle with their wife’s family, possibly in a different village,
while remaining actively involved in decision-making within
their own descent groups. This becomes challenging as the
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Figure 1. Mean village endogamy rate for each population. The first dark bar
in each group represents the mean village endogamy rate in this group (with
standard error). Asterisk indicates statistical significance (p-value << 0.05)
assessed by generalized linear mixed model. (Online version in colour.)

geographical distance between the natal villages of the wife
and the husband increases. Consequently, a preference for
local marriages has been observed in these societies, as sum-
marized by Murdock: ‘where residence is matrilocal, a man
in marrying rarely settles in a new community. He merely
takes his possessions from his parents’ home and moves, so
to speak, across the street’ [19, p. 214].

Several lines of evidence support the hypothesis that
the matrilineal puzzle is responsible for the different genetic
diversity patterns observed in the studied populations. First,
we confirmed from our ethno-demographic dataset that M
populations had higher village endogamy rates than P popu-
lations (on average 87% and 73% respectively). In addition,
C populations had similar village endogamy (84%) to M
populations. Previous ethnographic works on the matrilineal
populations under study also confirmed the existence of a pre-
ference for local endogamy. Indeed, the Jarai marry according
to a ‘the closest, the safest’ rule [18] and in the Tampuan popu-
lation [37], the councils of elders are reluctant to integrate into
their villages a man coming from a distant village, a preference
still prevailing these days, that may contribute to increase the
rate of village endogamy.

Secondly, the village endogamy rate was shown to be a
good predictor of the genetic inbreeding levels in these popu-
lations. However, the preference for cousin marriages in these
populations as reported by the ethnographic literature
appears to be a poor predictor of their estimated genetic
inbreeding levels: preferences for cousin marriages were
reported for most M and P populations [18,37-40] but not
for the C populations [38,41-43]. More generally, the percen-
tages of populations with a preference for cousin marriages
estimated in a worldwide population sample are higher for
both matrilineal and patrilineal populations than for cognatic
populations (42.3%, 40% and 19.7% respectively, [2]). These
percentages do not fit with our observation that M and C
populations have higher genetic inbreeding levels than P
populations. Last but not least, a detailed ethnographic
study in the Jarai population had shown that the preference

for village endogamy was stronger than the preference
for cousin marriages: the number of marriages within the
same village exceeded the total number of preferential
marriages, in particular between ego and mother’s brother’s
daughter, and between ego and father’s sister’s daughter
[18]. Consequently, the matrilineal puzzle, and its conse-
quences in terms of endogamy, is a more likely candidate
than the prevalence of cousin marriages to explain the
observed differences in genetic patterns between M, C and
P populations.

Note also that, despite the fact that M populations are
famous for their high paternity uncertainty rate ([12] and refer-
ences therein), we do not think this process could contribute to
the observed genetic differences between M, C and P popu-
lations. Indeed, we would expect such paternity uncertainty
to decrease, rather than increase, the genetic inbreeding level
in these populations in comparison to patrilineal populations;
for example, a child born from first cousins may have lower
genetic inbreeding coefficient than expected because his
parents may share the same grandmother but different
grandfathers.

In patrilineal and patrilocal populations, the matrilineal
puzzle does not occur as most men settle with their wife in
their natal village whether they marry a woman from the
same or from another village, with no risk of losing their pos-
ition of influence or leadership, or their control over their
descent-group affairs. This leads to comparatively lower
local endogamy rates and lower inbreeding levels in these
patrilineal populations, as well as an absence of isolation-
by-distance patterns. In our dataset, we noticed one exception
to this general observation: the Khmu’, a patrilineal and
patrilocal population, exhibits a matrilineal-like rate of village
endogamy and genetic inbreeding level. The reasons for these
differences from the other P populations remain to be inves-
tigated. One explanation could be that, although Khmu’
follow a general patrilineal descent and patrilocal residence,
there is in some families a period of matrilocal residence
(up to three years) [40]. Despite the fact that this matrilocal
residence is not permanent, this may generate a ‘nascent’
matrilineal puzzle, encouraging men to marry a woman
from the same village.

As discussed in the introduction, local endogamy is prob-
ably not the only coping mechanism to the matrilineal
puzzle; for example, one of the brothers could escape from
the matrilocal rule, allowing him to stay in his natal village
(with his wife coming from the same or from a different vil-
lage) and deal with his descent-group matters [5]. However,
our ethno-demographic data do not support such an alterna-
tive coping mechanism to the matrilineal puzzle in the
Southeast Asian populations under study, since the matrili-
neal and matrilocal populations followed their residence
rule more strictly than the patrilineal and patrilocal popu-
lations under study [26].

Lastly, the design of this study, which includes cognatic
populations with predominant matrilocal residence, allows
us to disentangle the effect of descent from the effect of resi-
dence on the ‘matrilineal puzzle’. Indeed, as pointed out
above, the cognatic populations (C) under study exhibit a simi-
lar rate of village endogamy and genetic inbreeding compared
to the matrilineal populations (M). Altogether, these popu-
lations with matrilocal or predominant matrilocal residence
exhibit higher village endogamy and higher genetic inbreeding
than patrilocal populations (both p-values < 0.05, estimated by
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Figure 2. Genetic inbreeding coefficients. (a) Each point represents the inbreeding coefficient of an individual. Coefficients are sorted in ascending order in each
population. (b) The first dark bar in each group represents the mean inbreeding level in this group. All values are represented with standard error. Asterisks indicate
statistical significance (p-value << 0.05) assessed by linear mixed model. (Online version in colour.)
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linear mixed model). Consequently, the matrilineal descent
rule is probably not the main component exerting a constraint
over male migrations. As pointed out by A. Richards, under
any form of matrilocal marriage (whatever the descent rule
is), men find themselves, at least initially, in a position of sub-
jection in their wives’ villages (while possibly losing a position
of leadership in their natal village), an “irksome’” situation that
can be avoided by marrying a woman from the same village
[5]. As such, the ‘matrilineal puzzle’ could be renamed
the ‘matrilocal puzzle’ in order to express the fact that it
seems to affect not only matrilineal populations but also all
matrilocal populations.

Our interdisciplinary study has a number of limitations. We
could expect populations facing the matrilineal puzzle to exhi-
bit not only a higher rate of village endogamy but also smaller
distances between villages when couples are exogamous. How-
ever, our ethno-demographic dataset did not allow us to
measure the geographical distance between spouses’ natal vil-
lages. Consequently, we used the rate of village endogamy as
a proxy for local endogamy in this study. In addition, our
ethno-demographic dataset may suffer from certain sampling
biases. For example, only individuals having their four

grandparents from the same population were sampled, a cri-
terion often used in population genetic studies, that may have
biased our estimation of village endogamy (however, only
slightly, as the proportion of interethnic marriages in these
populations is low). There may be some other biases in such
endogamy estimation; for example, the information regarding
birth places as remembered by the interviewees for some of
their relatives, especially their grandparents, may be erroneous,
potentially biasing our estimation of village endogamy
upwards (but equally so for M, C and P populations). Some
matrilineal populations are famous for their duolocal residence
mode, with husbands living with their sisters and visiting their
wives [8]. However, such duolocal residence was not observed
for any couple in our ethno-demographic survey, and was not
reported in the ethnographic literature available on the popu-
lations under study [18,37-49], so we do not believe that the
undetected occurrence of this residence mode could have
biased our estimated endogamy rates. The cognatic populations
included in this study were not fully matrilocal but include two
multilocal populations with final settlement in the wife’s vil-
lage. Replication of this study in fully matrilocal populations
is warranted.

Despite these limitations, our study not only suggests that
the matrilineal puzzle is still in action in present-day Southeast
Asia but also that such a puzzle shapes genetic diversity pat-
terns in human populations, thus identifying a new cultural
factor contributing to genetic diversity patterns among
human populations. It has previously been shown that
genetic inbreeding levels are greatly influenced by the preva-
lence of consanguineous marriages in human populations
[33,50-55]. Our study shows that the association of matrilocal-
ity with local endogamy, which takes root in male dominance,
may also contribute to some extent to higher inbreeding levels
in human populations, thus revealing an additional layer of
complexity to the interactions between socio-cultural factors
and human genetic diversity patterns.

It remains to be investigated whether our result can be
generalized to other matrilocal populations. It is likely to be
s0, as high endogamy has been reported by anthropologists
as a general feature of matrilocal populations [6,19]. From
our study, we can predict that other matrilocal populations
will have higher genetic inbreeding levels than populations
sharing the same environment, the same way of life, belong-
ing to the same linguistic family (the criteria we used to select
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our populations to study) but having different social organiz-
ations. If such a prediction holds, high inbreeding could
become an informative marker of matrilocality for ancient
DNA studies trying to decipher the social organization of
past human populations.

4. Methods

(a) Data collection
(i) Sampled populations

Twelve populations from Cambodia and Laos were sampled in 57
villages during three field missions carried out between 2011 and
2012: the Tampuan, Jarai, Kacho’, Bunong, Khmer, Brao and
Kreung from Cambodia and the Khmu’, Ramet, Ta-oih, Pacoh
and Prai from Laos (table 1). The populations were chosen for
their differences in social organization. Most of them have been
the focus of ethnographic works, describing in detail their social
organization. The Tampuan, Jarai, Kacho” and Prai have matrili-
neal descent and matrilocal residence [18,37,38,48], the Khmu’,

Ramet, Ta-oih and Pacoh have patrilineal descent and patrilocal
residence [38—40,46,47], the Bunong and the Khmer have cognatic
descent and matrilocal residence [41,43,44,49], the Brao and
Kreung have cognatic descent and multilocal residence
[38,42,43,45]. Our previous analysis of ethno-demographic data
collected in these populations [26] has shown that the four
cognatic populations actually had comparable percentages of
matrilocal couples (estimated to 43-48% of the exogamous
couples), and that these matrilocal couples outnumbered the
percentages of patrilocal couples (estimated to 13—-38% of the exo-
gamous couples). This shows that the final settlement of couples in
the two multilocal populations is most often located in the wife’s
natal village. Consequently, we grouped these four populations
into a single group of cognatic populations with predominant
matrilocal residence. We refer in this paper to the matrilineal
and matrilocal populations, to the cognatic populations with pre-
dominant matrilocal residence, and to the patrilineal and
patrilocal populations respectively as M, C and P populations.
All these populations belong to the Austro-Asiatic linguistic
family, except the Jarai that speak an Austronesian language.
Note that in these Southeast Asian populations, the village is
an important social unit [18,37,40]. In the case of the matrilineal
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and patrilineal populations under study, each village usually com-
prises families belonging to several clans. Some of the 57 villages
that were integrated in this study were ancient and stable in time,
with, for example, a great tree marking symbolically its location.
Others had been moving, either in line with a traditional practice
[37] or because of recent political changes in Cambodia and Laos
in the past two generations [37,40]. The members of each village
usually know the history of the village [37] and our ethno-demo-
graphic data collection allowed us, while in the field, to exclude
from our sampling, villages for which social integrity had been
lost due to political events in the past two generations.

(ii) Ethno-demographic interviews

We interviewed 532 individuals, conjointly with their spouse,
and collected ethno-demographic information (place of birth,
village of residence; see [26] for details) about them and their
family members (parents, grandparents, siblings, children and
their respective spouses). This procedure allowed us to gather
ethno-demographic information for 3530 couples.

(iii) DNA samples

Seven hundred and fifty-three individuals with all four grand-
parents from the same population were studied. We collected
two saliva samples for each individual (4 ml each). Samples
were kept in equivalent volume of lysis buffer with 800 pl of
10% SDS and 20 pl of proteinase K (20 mg ml ™). DNA was
extracted from saliva samples using a standard ethanol precipi-
tation protocol [56]. All participants provided written informed
consents and the study was approved by the National Ethic
Comities for Health Research in Cambodia and Laos as well as
by the Comité Opérationnel pour 1’Ethique (CNRS, France).

(iv) SNP genotyping

Samples were genotyped on Illumina Omnil (529 individuals)
and Omni2.5 SNP arrays (224 individuals). SNPs present on
both chips were retained, leading to a dataset of 701 163 SNPs
for 753 individuals. After quality control (electronic supplemen-
tary material, figure S2), the dataset contained 598 764 SNPs for
743 individuals.

We used the method described in Conomos et al. [57] in
order to check if any siblings were present in the dataset. We
removed 24 individuals in order to get a sibling-free dataset
(which will be used when estimating the genetic inbreeding
coefficients). This dataset contained 598764 SNPs genotyped
for 719 individuals.

In addition, we prepared a dataset excluding first and second-
degree relationships in order to estimate effective sizes, Fsr,
isolation-by-distance patterns, and allelic frequencies (necessary
for the estimation of genetic inbreeding coefficients). To do so,
first- and second-degree relationships were inferred using KING
v. 2.1.6 [58]. Two hundred and thirty individuals were removed
to generate this first- and second-degree relationships-free dataset,
containing 598 764 SNPs genotyped for 489 individuals.

(b) Data analysis

(i) Selection of populations with similar effective population sizes
Firstly, we checked that all the studied populations have compar-
able effective sizes since this parameter is known to influence
inbreeding levels [59], with smaller effective population sizes
associated with higher inbreeding. We estimated the effective
population size of each population using the method described in
Auton & McVean [60] (electronic supplementary material, table
54). Effective population sizes were compared between populations
by a Welch'’s t-test with a Bonferroni correction for multiple testing.
Among all studied populations, Prai was the only population with
a significantly lower effective population size compared to all other

populations (7182 compared to 13 228 (s.d. & 1403) on average for n

the other populations; p-values < 0.05; electronic supplementary
material, tables 5S4 and S5). Consequently, the Prai population
was not included in the analyses presented below (however, similar
results and conclusions were reached when this population was
included; see electronic supplementary material, figure S3 for a
graphical summary of these results). The final dataset included 11
populations, with 598764 SNPs genotyped for 675 individuals
for the sibling-free dataset and 466 individuals for the first- and
second-degree relationships-free dataset. The ethno-demographic
dataset included 495 ethno-demographic interviews providing
information for 3261 couples (table 1).

(ii) Village endogamy estimation

A full description of the post-marital residence patterns for each
population under study is provided in our previous study [26].
Here, for each population, we estimated the proportion of couples
for which both spouses were born in the same village (village
endogamy rate). We then used logistic regression to assess the
influence of social organization (M, P and C) on the probability
that individuals marry partners from the same village with the
‘glmer” function in ‘lme4’ package v. 1.1-9 in R [61]. We incorpor-
ated population as a fixed effect and village of residence and
family as random effects in this model in order to account for
potential sampling bias. P-values were estimated with the
‘Ismeans’ function in the ‘Ismeans” package v. 2.27-2 in R.

(iii) Genetic inbreeding coefficients estimation

We used the FEstim software [36] integrated in the FSuite pipe-
line [35] to estimate the inbreeding coefficient and the parental
mating types of each individual. Genetic maps were retrieved
from the shapeit homepage [62]. The --hotspots option with
hg19 build was used when creating the 100 submaps. Allele fre-
quencies were estimated separately for each population (using
the first- and second-degree relationships-free dataset).

Then, we used a mixed linear model to assess the influence of
social organization (M, P and C) on inbreeding coefficients. We
incorporated population as a fixed effect and village of residence
and family as random effects in this model in order to take
into account potential sampling bias. P-values were estimated
with the ‘Ismeans’ function in the ‘Ismeans’ package v. 2.27-2 in R.

Spearman’s correlation coefficient between village endogamy
rate and mean inbreeding coefficient was estimated at the
population level.

(iv) Isolation-by-distance pattern

Fixation indices (Fst) between villages within each population
were estimated using Genepop 4.7 [63]. Only villages with a
minimum of five individuals were included in this analysis.
Populations with less than four villages filling this condition
were removed from the analysis. As such, Kacho’, Kreung and
Ta-oih were excluded from this analysis. The dataset was then
pruned using Plink 1.9 [64] -indep-pairwise option with a
window size of 50 SNPs, sliding by five SNPs and a pairwise
r? threshold of 0.5 to create a dataset of 252680 SNPs in low
linkage disequilibrium. Negative Fst were changed to 0. A
linear regression model was fitted with genetic distance between
villages estimated by Fsr/(1 — Fsr) as the dependent variable
and geographical distance in metre (decimal logarithmic value)
as the explanatory variable for each population. Statistical
significance of the correlation between genetic distances
and geographical distances was evaluated using a Mantel test
with 10 000 permutations.

All statistical analyses were performed in R v. 3.2.2 [61].

Ethics. All participants provided written informed consents and the
study was approved by the National Ethic Comities for Health
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Genotyping data has been deposited at the European
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is hosted by the EBI and the CRG, under accession number
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Abstract

Admixture is a fundamental evolutionary process that has influenced genetic patterns
in numerous species. Maximume-likelihood approaches based on allele frequencies
and linkage-disequilibrium have been extensively used to infer admixture processes
from genome-wide data sets, mostly in human populations. Nevertheless, complex
admixture histories, beyond one or two pulses of admixture, remain methodologically
challenging to reconstruct. We developed an Approximate Bayesian Computation
(ABC) framework to reconstruct highly complex admixture histories from independ-
ent genetic markers. We built the software package MeTHis to simulate independent
SNPs or microsatellites in a two-way admixed population for scenarios with multi-
ple admixture pulses, monotonically decreasing or increasing recurring admixture, or
combinations of these scenarios. MeTHis allows users to draw model-parameter val-
ues from prior distributions set by the user, and, for each simulation, MeTHis can calcu-
late numerous summary statistics describing genetic diversity patterns and moments
of the distribution of individual admixture fractions. We coupled MetHis with existing
machine-learning ABC algorithms and investigated the admixture history of admixed
populations. Results showed that random forest ABC scenario-choice could accu-
rately distinguish among most complex admixture scenarios, and errors were mainly
found in regions of the parameter space where scenarios were highly nested, and,
thus, biologically similar. We focused on African American and Barbadian populations
as two study-cases. We found that neural network ABC posterior parameter estima-
tion was accurate and reasonably conservative under complex admixture scenarios.
For both admixed populations, we found that monotonically decreasing contributions
over time, from Europe and Africa, explained the observed data more accurately than
multiple admixture pulses. This approach will allow for reconstructing detailed admix-

ture histories when maximum-likelihood methods are intractable.

KEYWORDS
admixture, Approximate Bayesian Computation, inference, machine-learning, population
genetics
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1 | INTRODUCTION

Hybridization between species and admixture between populations
are powerful mechanisms influencing biological evolution. Genetic
admixture patterns have thus been extensively studied to recon-
struct past population migrations or range-shifts and understand
admixture-related adaptation such as heterosis or post-admixture
selection (Brandenburg et al., 2017; Hellenthal et al., 2014; Skoglund
et al, 2015).

A long history of statistical developments in population ge-
netics provided tools to identify and describe admixture patterns
from genetic data (Bernstein, 1931; Cavalli-Sforza & Bodmer,
1971; Chakraborty & Weiss, 1988; Falush et al., 2003; Long, 1991;
Patterson et al., 2012). They enabled inferring the ancestral origins
of admixed populations or investigation of adaptive introgression
in numerous species (e.g., Martin et al., 2013; Patin et al., 2017;
Stryjewski & Sorenson, 2017).

1.1 | Maximum-likelihood methods to reconstruct
admixture histories

Two classes of maximum-likelihood (ML) methods have been ex-
tensively deployed to infer admixture histories from genetic data.
They rely on the moments of allelic frequency spectrum divergences
among populations (Lipson et al., 2013; Patterson et al., 2012;
Pickrell & Pritchard, 2012), and on admixture linkage disequilibrium
(LD) patterns—the distribution of LD within the admixed chunks of
DNA in the genomes of admixed individuals inherited from members
of the source populations (Guan, 2014; Chimusa et al., 2018; Gravel,
2012; Hellenthal et al., 2014; Loh et al., 2013; Moorjani et al., 2011).
Notably, Gravel (2012) developed an approach to fit the observed
curves of admixture LD decay to those theoretically expected under
admixture models involving one or two pulses of historical admix-
ture. These approaches significantly improved our understanding
of past admixture histories using genetic data (e.g., Baharian et al.,
2016; Martin et al., 2013).

Despite these major achievements, ML methods for admixture
history inference suffer from inherent limitations acknowledged by
the authors (Gravel, 2012; Hellenthal et al., 2014; Lipson et al., 2013).
First, most ML approaches can only consider one or two pulses of
admixture in the history of the admixed population. Nevertheless,
admixture processes are often expected to be much more complex,
and it is not yet clear how ML methods behave when they consider
only simplified versions of the true admixture history underlying the
observed data (Gravel, 2012; Hellenthal et al., 2014; Lipson et al.,
2013; Loh et al., 2013; Medina et al., 2018; Ni et al., 2019). Second,
it is possible to statistically compare ML values obtained from fit-
ting models with different parameters to the observed data, as a
guideline to find the “best” model. Nevertheless, formal statistical
comparison of the success or failure of competing models to explain
the observed data is often out of reach of ML approaches (Foll et al.,
2015; Gravel, 2012; Ni et al., 2019). Finally, admixture-LD methods,
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in particular, rely on fine mapping of local ancestry segments in in-
dividual genomes and thus require substantial amounts of genomic
data, and, sometimes, accurate phasing, which remain difficult in nu-

merous empirical data sets from most non-model organisms.

1.2 | Approximate Bayesian Computation
demographic inference

Approximate Bayesian Computation (ABC) approaches (Beaumont
et al., 2002; Tavaré et al., 1997) represent a promising alternative to
infer complex admixture histories from genetic data. Indeed, ABC
has been successfully used previously to formally test alternative
demographic scenarios hypothesized to be underlying observed ge-
netic patterns, and to estimate, a posteriori, the parameters of the
winning models, when ML methods could not operate (Boitard et al.,
2016; Fraimout et al., 2017; Verdu et al., 2009).

ABC scenario-choice and posterior-parameter estimation rely on
comparing observed summary statistics to the same set of statis-
tics calculated from simulations produced under competing demo-
graphic scenarios (Beaumont et al., 2002; Blum & Francois, 2010;
Csilléry et al., 2012; Pudlo et al., 2016; Sisson et al., 2018; Wegmann
et al., 2009). Each simulation, and corresponding vector of summary
statistics, is produced using model-parameters drawn randomly
from prior distributions explicitly specified by the user. This makes
ABC a priori particularly well-suited to investigate highly complex
historical admixture scenarios for which likelihood functions are
very often intractable, but for which genetic simulations are feasible
(Buzbas & Verdu, 2018; Gravel, 2012; Pritchard et al., 1999; Verdu
& Rosenberg, 2011).

1.3 | An ABC framework for reconstructing
complex admixture histories

In this paper, we show how ABC can be successfully applied to re-
construct, from genetic data, highly complex admixture histories
beyond models with a single or two pulses of admixture classically
explored with ML methods. To do so, we propose a novel forward-
in-time genetic data simulator and a set of parameter-generator and
summary statistic calculation tools, embedded in an open source C
software package called MeTHis. It simulates genetic data from inde-
pendent SNP or microsatellite loci under any two source-populations
versions of the Verdu and Rosenberg (2011) general model of ad-
mixture; and is adapted to conduct ABC inferences with existing
machine-learning ABC tools implemented in R (R Development Core
Team, 2020).

We show that our MeTHIs-ABC framework can accurately distin-
guish major classes of complex historical admixture models, involv-
ing multiple admixture-pulses, recurring increasing or decreasing
admixture over time, or combinations of these models, and provides
conservative posterior parameter inference under the chosen mod-

els. Furthermore, we introduce the quantiles and higher moments of
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FIGURE 1 Nine competing scenarios for reconstructing the admixture history of African American ASW or Barbadian ACB populations
descending from West European and West sub-Saharan African source populations during the Transatlantic Slave Trade. “EUR” represents
the Western European and “AFR” represents the West Sub-Saharan African source populations for the admixed population H. See Table 1
and Section 2 for descriptions of the parameters of the scenarios
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the distribution of admixture fractions in the admixed population as
highly informative summary statistics for ABC scenario-choice and
posterior-parameter estimation.

We exemplify our approach by reconstructing the complex
admixture histories underlying observed genetic patterns sepa-
rately for the African American (ASW) and Barbadian (ACB) popu-
lations. Both populations are known to be admixed populations of
European and African descent in the context of the Transatlantic
Slave Trade (TAST), whose detailed histories of admixture remain
largely unknown (e.g., Baharian et al., 2016; Martin et al., 2017). In
this case-study, we find that the ACB and ASW populations’ admix-
ture histories are much more complex than previously inferred, and
further reveal the diversity of histories undergone by these admixed

populations during the TAST in the Americas.
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2 | MATERIALS AND METHODS

We evaluated how ABC scenario-choice and posterior parameter
estimation performed for reconstructing highly complex historical
admixture processes from genetic data. To do so, we chose to work
under the two source-populations version of the general mechanis-
tic model of Verdu and Rosenberg (2011) briefly presented in Figure
S1. We introduce a novel software, MeTHis, for genetic data simu-
lation and summary statistic calculation for machine-learning ABC
inference under this general model (Note S1).

We conducted our proof of concept considering nine compet-
ing scenarios of complex admixture histories involving multiple
admixture pulses, recurring decreasing or increasing admixture, and

combinations of these processes (Figure 1, Table 1). We explored

TABLE 1 Parameter prior distributions for simulation with MeTHis and Approximate Bayesian Computation historical inference

Parameter names Parameter description Prior distribution Condition Scenarios
SAfr0 Afr. source introgression rate at Uniform [0,1] — All Scenarios
Seuro = 1 = Safro founding of H
Eafrpt Times of the Afr. source introgression Uniform [0,20] tarrpt * afrp2 Afr2pP
tafrp2 pulses p1 and p2 Scenarios
SAfrt Afrpl Afr. source introgression rates of Uniform [0,1] For all g, hg =1- Safre ™ SEurg in Afr2P
SAfrt Afrp2 pulses Afr,p1 and Afr,p2 [0,1] Scenarios
t‘EunID1 Times of the Eur. source introgression Uniform [0,20] t‘EumD1 # tEur’p2 Eur2P
teurp2 pulses p1 and p2 Scenarios
SEurt Eurpl Eur. source introgression rates of Uniform [0,1] Forall g, hg =1- Safrg ™ SEurg Eur2P
SEurt Eurp2 pulses Eur,p1 and Eur,p2 in [0,1] Scenarios
Safrd Afr. source introgression rate at the Uniform [0,1] Forallg, h, =1 = sxq o = Sgg IN AfrDE
first generation after founding [0,1] Scenarios
SAf.20 Afr. source introgression rate in the Uniform [0, s ¢, 1/3] Forallg, h, =1 = saq . = Sg,g iN AfrDE
present [0,1] Scenarios
Uiy Steepness of the decrease in Afr. Uniform [0,0.5] — AfrDE
source introgression rates Scenarios
Skurt Eur. source introgression rate at the Uniform [0,1] Forall g, hg =1 - Safrg ™ SEurg in EurDE
first generation after founding [0,1] Scenarios
SEur20 Eur. source introgression rate in the Uniform [0, sg,,,/3] Forallg, h, =1 =S¢ o = Sgyg IN EurDE
present [0,1] Scenarios
Ugyr Steepness of the decrease in Eur. Uniform [0,0.5] — EurDE
source introgression rates Scenarios
Safr1 Afr. source introgression rate at the Uniform [O, SAMO/S] Forall g, hg =1- Safre B SEurg in AfrIN
first generation after founding [0,1] Scenarios
SAfr.20 Afr. source introgression rate in the Uniform [0,1] Forall g, hg =1 - Safrg ™ SEurg in AfrIN
present [0,1] Scenarios
Upgr Steepness of the increase in Afr. Uniform [0,0.5] = AfrIN
source introgression rates Scenarios
Seurt Eur. source introgression rate at the Uniform [O, sEur,20/3] Forall g, hg =1- Safre ~ SEurg in EurIN
first generation after founding [0,1] Scenarios
SEur20 Eur. source introgression rate in the Uniform [0,1] Forall g, hg =1 - Safre ™ SEurg in EurIN
present [0,1] Scenarios
Ugyr Steepness of the increase in Eur. Uniform [0,0.5] — EurIN
source introgression rates Scenarios

Parameter list corresponds to the nine competing historical admixture scenarios described in Figure 1 and Section 2.
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the recent admixture history of two enslaved-African descendant
populations in the Americas with genome-wide independent SNPs.
Beyond this work, the MeTHIs-ABC framework can readily be used to
study numerous histories of complex admixture using independent
SNP or microsatellite markers (Note S1).

2.1 | Nine competing complex admixture scenarios

2.1.1 | Founding of the admixed population H

For all scenarios (Figure 1, Table 1), we chose a fixed time for the
founding (generation 0, forward-in-time) of the target admixed pop-
ulation H occurring 21 generations before present, with admixture
proportions SAfr0 and SEur0 from either source population S respec-
tively, African and European in our case, with s, 5 + sg,.o = 1, and
SAfr0 in [0,1]. This duration corresponds roughly to the first arrival of
European permanent settlers in the Americas in the late 15th cen-
tury, considering 20 or 25 years per generation and the sampled gen-
eration born in the 1980s. Note that simulations with a parameter
SAfr0 close to O, or alternatively 1, corresponded to the founding of
the population H from one source population only, therefore delaying
the first “real” genetic admixture event to the next admixture event.
Following founding, we considered three alternative scenarios for the

admixture contribution of each source population S separately.

2.1.2 | Admixture-pulse(s) scenarios

For a given source population S, African or European, scenarios S-2P
considered two possible pulses of admixture into population H oc-
curring respectively at time ts p1 and ts 2 distributed in [1,20] with
ts 1 # ts o with associated admixture proportion Ss t5.p1 and Ss 15,02 in
[0,1] satisfying, at all times t,SE (AZf:rvEur)Ss,t < 1(Figure 1, Table 1). Note
that for one of either St values close to 0, the two-pulses scenarios
were equivalent to single-pulse scenarios after the founding of H.
Furthermore, for both Sst values close to 0, scenarios S-2P were
nested with scenarios where only the founding admixture pulse 21
generations ago was the source of genetic admixture. Alternatively,
ss parameter values close to 1 considered a virtual complete re-
placement of population H by population S at that time, thus oblit-
erating all previous admixture events.

2.1.3 | Recurring decreasing admixture scenarios

For a given source population S, scenarios S-DE considered a recur-
ring monotonically decreasing admixture from population S at each
generation between generation 1 (after founding at generation 0)
and generation 20 (sampled population) (Figure 1, Table 1). In these
scenario, S5 with g in [1,20], were the discrete numerical solutions
of a rectangular hyperbola function over the 20 generations of the
admixture process until present, as described in Note S2. In brief,

this function is determined by the parameter ug, the “steepness” of
the curvature of the decrease, in [0,1/2], Ss1» the admixture propor-
tion from population S at generation 1 (after founding), in [0,1], and
Ss 90 the last admixture proportion in the present, in [O,ssyl/S]. Note
that we chose the boundaries for $5.20 in order to reduce the param-
eter space and nestedness among competing scenarios, by explicitly
forcing scenarios S-DE into substantially decreasing admixture pro-
cesses. Furthermore, note that parameter ug values close to O cre-
ated pulse-like scenarios of intensity Ssq occurring immediately after
founding, followed by constant recurring admixture of intensity s ,,
at each generation until present. Alternatively, parameter ug values
close to 1/2 created scenarios with linearly decreasing admixtures
between s¢, and S50 from population S at each generation after

founding.

2.1.4 | Recurring increasing admixture scenarios

For a given source population S, scenarios S-IN mirrored the S-DE
scenarios by considering instead a recurring monotonically increas-
ing admixture from population S (Figure 1, Table 1). Here, S5 with g
in [1,20], were the discrete numerical solutions of the same function
as in the S-DE decreasing scenarios (see above), flipped over time
between generation 1 and 20. In these scenarios, s ,, was defined in
[0,1] and Ss1 in [0,5520/3], and u, in [0,1/2], parametrized the “steep-
ness” of the curvature of the increase. Note that S-IN scenarios were
nested with pulse-like scenarios over the parameter space of u val-
ues, analogously to the nestedness of S-DE and pulse-like scenarios
described above.

2.1.5 | Combining admixture scenarios from either
source populations

We combined these three scenarios to obtain nine alternative sce-
narios for the admixture history of population H (Figure 1, Table 1),
with the only condition that, at each generation g in [1,20], parame-
ters satisfied Satrg * Seurg T hg =1, with hg, in [0,1] being the remaining
contribution of the admixed population H to itself at generation g.

Four scenarios (Afr2P-EurDE, Afr2P-EurIN, AfrDE-Eur2P, and
AfrIN-Eur2P) considered a mixture of pulse-like and recurring admix-
ture from each source. Three scenarios (Afr2P-Eur2P, AfrDE-EurDE,
and AfrIN-EurIN), considered symmetrical classes of admixture
scenarios from either source. Two scenarios (AfrIN-EurDE and
AfrDE-EurIN) considered mirroring recurring admixture processes.
Importantly, this scenario design considered nested historical sce-
narios in specific parts of the parameter space.

2.2 | Forward-in-time simulations with MetHis

Simulation of independent genetic markers under highly complex ad-
mixture histories is often not trivial under the coalescent and using
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classical existing software. Indeed, the coalescent generally assumes
a different pedigree for each independent locus instead of a single
pedigree having, in reality, produced all observed gene genealogies
(see Wakeley et al., 2012). In this context, and because pedigrees
are rarely known a priori, we developed MeTHis, a C open-source
software package available at https://github.com/romain-laurent/
MetHis. MeTHIs simulates independent SNPs or microsatellite mark-
ers in an admixed population H under any version of the two source-
populations general model from Verdu and Rosenberg (2011), and
calculates summary statistics of interest to the study of complex
admixture processes (Note S1).

2.2.1 | Simulating the admixed population, effective
population size, and sampling individuals

At each generation, MeTHis performs simple Wright-Fisher (Fisher,
1922; Wright, 1931) forward-in-time simulations, individual-
centered, in a panmictic population of diploid effective size Ng. For
a given individual in the population H at the following generation
(g + 1), MeTHis independently draws each parent from the source
populations with probability Ssg (Figure 1, Table 1), or from popula-
tion H with probability hg=1- ¥

Se (Afr,Eur)
loid gamete of independent markers for each parent, and pairs the

Ssg, randomly builds a hap-

two constructed gametes to create the new individual.

Here, we decided to neglect mutation over the 21 generations of
admixture considered. This was reasonable when studying relatively
recent admixture histories and considering independent genotyped
SNP markers. For users interested in microsatellite variation and
longer admixture histories, MeTHIs readily implements a standard
general stepwise mutation model allowing for insertion or deletion
(Estoup et al., 2002), with parameters set by the user (Note S1).

To focus on the admixture process itself without excessively in-
flating the parameter space, we considered, for each of the nine com-
peting scenarios, the admixed population H with constant effective
population size Ng = 1000 diploid individuals. Nevertheless, note that
MeTHis readily allows the user to parametrize, instead, stepwise or
continuous changes in effective population size over time (Note S1).

After each simulation, we randomly drew individual samples
matching sample-sizes in our observed data set (see Section 2.4.3).
We sampled individuals until our sample set contained no individu-
als related at the first degree cousin within each population and be-
tween population H and either source population, based on explicit
parental flagging during the last two generations of the simulations.
Note that this is done to best mimic, a priori, the observed case-
study data sets, but excluding related individuals is an option set by
the user in MeTHis (Note S1).

2.2.2 | Simulating source populations

METHIs, inits current form, does not allow simulating the source pop-
ulations for the admixture process modeled in Verdu and Rosenberg
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(2011). Simulating source populations can be done separately using
existing genetic data simulation software such as fastsimcoal2 se-
quential coalescent (Excoffier et al., 2013; Excoffier & Foll, 2011).
Another possibility to simulate source populations emerges if ge-
netic data is already available for the known source populations, as it
is the case in our case studies of enslaved-African descendants in the
Americas (see Section 2.4.3). We considered here that the African
and European source populations were very large populations at the
drift-mutation equilibrium, accurately represented by the Yoruban
YRI and British GBR data sets here investigated (see Section 2.4.3).
Therefore, we first built two separate data sets each comprising
20,000 haploid genomes of 100,000 independent SNPs, each SNP
being randomly drawn in the site frequency spectrum (SFS) observed
for the YRI and GBR data sets respectively. These two data sets
were used as fixed gamete reservoirs for the African and European
sources separately, at each generation of the forward-in-time admix-
ture process. From these reservoirs, we built an effective individual
gene pool of diploid size Ng, by randomly pairing gametes avoiding
selfing. These virtual source populations provided the parental pool
for simulating individuals in the admixed population H with MeTHis,
at each generation. Thus, while our gamete reservoirs were fixed,
the parental genetic pools were randomly built anew at each gener-
ation. Again, note that this is not necessary to the implementation of
MeTHIs for investigating complex admixture histories; source popu-

lations can be simulated separately by the user at will.

2.3 | Summary statistics

MeTHis is designed to work in an ABC inference framework and,
thus, can calculate numerous summary statistics. A complete list of
summary statistics can be found in Note S1. Below are the summary
statistics considered in our case studies, in particular introducing the
distribution of admixture fractions in population H, as summary sta-
tistics for ABC inference.

2.3.1 | Thedistribution of admixture fractions as a
set of summary statistics

Most methods developed to estimate individual admixture fractions
from genetic data (e.g., Alexander et al., 2009), are computationally
intensive, and are thus difficult to iterate over large sets of simulated
genetic data. This explains why they have not been routinely used
in ABC in the past, despite being theoretically highly informative for
admixture inference (Gravel, 2012; Verdu & Rosenberg, 2011).
Here, we propose, and implement in MeTHis, an efficient way to
use estimated individual admixture fractions as summary statistics for
ABC inference, based on allele sharing dissimilarity (ASD) (Bowcock
et al., 1994) and multidimensional scaling (MDS). For each simulated
data set, we first calculated a pairwise interindividual ASD matrix using
our implementation of the asp software (https://github.com/szpiech/
asd), using all pairs of sampled individuals and all markers. Then we
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projected in two dimensions this pairwise ASD matrix with classical
unsupervised metric MDS using the “cmdscale” function in R. We ex-
pected individuals in population H to be dispersed along an axis joining
the centroids of the proxy source populations on the two-dimensional
MDS plot. We projected population H’s individuals orthogonally onto
this axis, and calculated each individual's relative distance to each cen-
troid. We considered this measure as an estimate of individual average
admixture level from either source. Note that by doing so, some indi-
viduals might show “admixture fractions” higher than one, or lower
than zero, as they might be projected on the other side of a source-
population's centroid when being genetically close to 100% from this
source population. Under an ABC framework, this was not a difficulty
since this may happen also with the real data a priori, and the goal of
ABC is to use summary statistics that mimic the observed ones.

This individual admixture estimation method has been shown to
be highly concordant with cluster membership fractions as estimated
with STRUCTURE (Falush et al., 2003) or ADMIXTURE (Alexander
et al., 2009) in real data analyses (e.g., Verdu et al., 2017). We con-
firmed these previous findings since we obtained a Spearman's rank
correlation (calculated using the cor.test function in R), of p = 0.950
(p-value <2.107%) and p = 0.977 (p-value <2.107%) between admix-
ture estimates based on ASD-MDS and on ADMIXTURE, for the two
case-study data sets here explored (Figure S2).

We used the mean, mode, variance, skewness, kurtosis, minimum,
maximum, and all 10%-quantiles of the admixture distribution in pop-

ulation H, as 16 separate summary statistics for ABC inference.

2.3.2 | Within population summary statistics
We calculated marker by marker heterozygosities (Nei, 1978), and
we considered the mean and variance of this quantity across mark-
ers in the admixed population as two separate summary statistics for
ABC inference. In addition, we considered the mean and variance of
ASD values across pairs of individuals within population H.

2.3.3 | Between populations summary statistics

We calculated multilocus pairwise F¢; (Weir & Cockerham, 1984)
between population H and each source population respectively.
Furthermore, we calculated the mean ASD between individuals in
population H and individuals in each source population, separately.

Finally, we calculated the f, statistics (Patterson et al., 2012).

2.4 | Approximate Bayesian Computation

MEeTHIs provides, as outputs, vectors of scenario parameters and cor-
responding vectors of summary statistics in reference tables ready
to be used with the machine-learning ABC R packages agsc (Csilléry
et al., 2012), and ascrr (Pudlo et al., 2016; Raynal et al., 2019).

241 | Simulating by randomly drawing parameter
values from prior distributions

We performed MeTHis simulations under each of the nine competing
scenarios (Figure 1), drawing the corresponding scenario-parameters
in prior distributions detailed in Table 1 and automatically generated

by MeTHIs parameter-generator tools (Note S1).

2.4.2 | Complex admixture scenario-choice with
Random-Forest ABC

For ABC scenario-choice, we performed 10,000 independent
MeTHIs simulations for each of the nine competing scenarios. To
mimic our case study data sets (see Section 2.4.3), we simulated
100,000 SNPs and sampled 50 individuals in population H, and 90
and 89 individuals respectively in the African and European source
populations. Using 27 cores and the above design, we performed the
90,000 simulations with MeTHis in four days, with 2/3 of that time
for summary statistics calculation only (Note S1).

We used Random-Forest ABC for scenario-choice imple-
mented in the “abcrf” function of the ascrF package to obtain the
cross-validation table and associated prior error rate using an out-
of-bag approach. We considered a uniform prior probability for
the nine competing models. We considered 1,000 decision trees
in the forest after visually checking that error-rates converged ap-
propriately, using the “err.abcrf function”. RF-ABC cross-validation
procedures using groups of scenarios were conducted using the
group definition option in the “abcrf” function (Estoup et al., 2018).
Finally, the relative importance of each summary statistic to the
scenario-choice cross-validation was computed using the “abcrf”
function.

We explored scenario-choice erroneous assignation due to sce-
nario nestedness in the parameter space, by considering 1000 ran-
domly chosen simulations per scenario as pseudo-observed data.
We trained the RF algorithm based on the 9000 remaining simu-
lations per scenario using the “abcrf” function as described above,
which provided highly similar results as when considering 10,000
simulations per scenario (results not shown). We then used the “pre-
dict.abcerf” function to perform scenario-choice independently for
each of the 1,000 simulated pseudo-observed data with known pa-
rameter vectors.

To empirically evaluate the power of the RF-ABC scenario-
choice to distinguish complex admixture processes, we conducted
similar cross-validations procedures based on additional 10,000
simulations per scenario for 50,000 and, separately, 10,000 SNPs,
instead of 100,000 SNPs (180,000 additional simulations in total).

Furthermore, using 100,000 SNPs, we produced 90,000 addi-
tional simulations and performed cross-validations, considering a
five-times smaller sample set, with 10 sampled individuals in popula-
tion H (instead of 50 as previously) and 18 individuals in each source

population (instead of 90 and 89).
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2.4.3 | Case-study population genetics data sets

We investigated, as two separate study-cases, the admixture histo-
ries of the African American (ASW) and Barbadian (ACB) population
samples from the 1000 Genomes Project Phase 3 (1000 Genomes
Project Consortium, 2015). Previous studies identified, within the
same database, the West European Great-Britain (GBR) and the
West African Yoruba (YRI) populations as reasonable proxies for the
sources of both ACB and ASW, consistent with the macro-history
of the Transatlantic Slave-Trade (Baharian et al., 2016; Martin et al.,
2017; Verdu et al., 2017).

Individuals in the 1000 Genomes Project were a priori sampled
to be family unrelated. To avoid confounding factors due to cryptic
relatedness in this sample set compared to MeTHis simulations, we
excluded individuals more closely related than first-degree cousins
in the four populations separately using RELPAIR (Epstein, Duren,
& Boehnke, 2000), as previously done (Verdu et al., 2017). We
also excluded the three ASW individuals showing traces of Native
American or East-Asian admixture, as reported in previous studies
(Martin et al., 2017). Among the remaining individuals we randomly
drew 50 individuals in the target admixed ACB and ASW, respec-
tively, and included the remaining 90 YRI individuals and 89 GBR
individuals.

We extracted biallelic polymorphic sites (SNPs as de-
fined by the 1000 Genomes Project Phase 3) from the merged
ACB+ASW+GBR+YRI data set, excluding singletons. Since MeTHis
could only simulate independent markers, we LD-pruned the
ACB and ASW SNP-sets using the PLINK (Purcell et al., 2007)
“--indep-pairwise” option with a sliding window of 100 SNPs, mov-
ing in increments of 10 SNPs, with an r? threshold of 0.1. Finally, we
randomly drew 100,000 SNPs from the remaining SNP-set.

2.4.4 | Prior-checking of simulations’ fit to the case-
study data sets

We plotted prior distributions of each summary statistic and visu-
ally verified that the observed summary statistics for the ACB and
ASW respectively fell within the simulated distributions. Then, we
explored the first four axes of a principal component analysis (PCA)
computed with the “princomp” function in R, using the 24 summary
statistics and all 90,000 simulations, and visually checked that ob-
served summary statistics were within the cloud of simulated sta-
tistics. Finally, we performed a goodness-of-fit approach using the
“gfit” function from the aBc package in R, with 1,000 replicates and

tolerance level 0.01.

2.4.5 | RF-ABC scenario-choice for the admixture
history of ACB and ASW populations

For the ACB and ASW observed data separately, we performed
scenario-choice prediction and estimation of posterior probabilities

RESOURCES

of the winning scenario using the “predict.abcrf” function in the
ABCRF package, using the complete simulated reference table for
training the Random-Forest algorithm (100,000 SNPs, 50 individuals
in population H, 90 and 89 individuals in the African and European
sources, respectively).

2.4.6 | Posterior parameter estimation with Neural-
Network ABC

It is difficult to estimate jointly the posterior distribution of all
model parameters with RF-ABC (Raynal et al., 2019). Furthermore,
although RF-ABC performs satisfactorily well with an overall lim-
ited number of simulations under each model (Pudlo et al., 2016),
posterior parameter estimation with other ABC approaches, such
as simple rejection (Pritchard et al., 1999), regression (Beaumont
et al, 2002; Blum & Francois, 2010) or Neural-Network (NN)
(Csilléry et al., 2012), require substantially more simulations a
priori. Therefore, we performed, for posterior parameter estima-
tions, 90,000 additional simulations, for a total of 100,000 simula-
tions under the best scenarios identified with RF-ABC for the ACB
and ASW separately. For comparison purposes, we also performed
an additional 90,000 simulations (for a total of 100,000 simula-
tions) under the loosing scenario Afr2P-Eur2P (see Results), and
conducted anew the below parameter estimation and error evalu-

ation procedures for this scenario.

2.4.7 | Neural-Network tolerance level and
number of neurons in the hidden layer

We determined empirically the NN tolerance level (i.e., the num-
ber of simulations to be included in the NN training), and number
of neurons in the hidden layer. Indeed, the NN needs a substan-
tial amount of simulations for training, and there is also a risk of
overfitting posterior parameter estimations when considering too
large a number of neurons in the hidden layer. However, there are
no absolute rules for choosing both numbers (Csilléry et al., 2012;
Jay et al., 2019).

Therefore, we tested four different tolerance levels to train
the NN for parameter estimation (0.01, 0.05, 0.1, and 0.2), and a
number of neurons that ranged between four and seven (the num-
ber of free parameters in the winning scenarios, see Results). For
each pair of tolerance level and number of neurons, we conducted
cross-validation with 1000 randomly chosen simulated data sets
that we used, in turn, as pseudo-observed data with the “cv4abc”
function in the package aBc. We compared the median point-
estimate of each posterior parameter (@,») to the true parameter
value used for simulation (6;). The cross-validation parameter pre-
diction error was then calculated across the 1000 separate pos-
terior estimations for pseudo-observed data sets for each pair of
tolerance level and number of neurons, and for each parameter 9;, as

1000 (8; — 0,)2/ (1000 x Variance(6;) ), using the “summary.cv4abc”
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function in the package asc (Csilléry et al., 2012). Results showed
that, a priori, all numbers of neurons considered perform very sim-
ilarly for a given tolerance level. Furthermore, results showed that
considering the 1% closest simulations to the pseudo-observed ones
reduced the average error for each number of neurons tested. Thus,
we decided to opt for four neurons in the hidden layer and a 1%
tolerance level for training the NN in all subsequent parameter infer-

ence, in order to avoid overfitting.

2.4.8 | Estimation of scenario-parameters’ posterior
distributions

We jointly estimated the posterior distributions of scenario param-
eters for the ACB and ASW admixed populations separately, using
NN-ABC “neuralnet” method option in the function “abc”, with logit-
transformed (“logit” transformation option) summary statistics using
a 1% tolerance level and four neurons in the hidden layer.

2.49 | Posterior parameter estimation error
We evaluated the posterior error of the NN-ABC approach in the
vicinity of our observed data rather than randomly on the entire pa-
rameter space. To do so, we first identified the 1000 simulations clos-
est to the real data by setting a tolerance level of 1% with the "abc"
function, for the ACB and ASW respectively. Then, we performed
1000 separate NN-ABC parameter estimations, each parameter-
ized as described above, using in turn the remaining 99,999 simula-
tions as reference tables, and recorded the median point estimate
for each parameter. We then compared each parameter estimate
with the true parameter used for each one of the 1000 pseudo-
observed target data and provided three types of error measure-
ments. The mean-squared error scaled by the variance of the true
parameter 21000 (8; — 0,)2/ (1000 x Variance(6;)), as previously
(Csilléry et al., 2012); the mean-squared error Z}OOO (8; — 6,)2/1000,
which allowed to compare errors for a given scenario and parameter
between the ACB and ASW analyses; and the mean absolute error
}000 |§,~—0,~|/1000, which provided a more intuitive parameter
estimation error. For comparison, we conducted the above analy-
sis using instead parameters estimated under the losing scenario
Afr2P-Eur2P.

2410 | 95% credibility interval accuracy

We evaluated a posteriori, if, in the vicinity of the two observed data
sets respectively, the lengths of the estimated 95% confidence inter-
vals (Cl) for each parameter were accurately estimated or not (e.g.,
Jay et al., 2019). To do so, we calculated how many times the true
parameter (9;) was found inside the estimated 95% CI (2.5% quantile
(67,-) ); 97.5% quantile (@,-)), among the 1000 out-of-bag NN-ABC pos-
terior parameter estimations. For each parameter, if fewer than 95%

of the true parameter values were found inside the 95% Cl estimated
for the observed data, we considered the length of this credibility in-
terval as underestimated which was indicative of a nonconservative
behaviour of the parameter estimation. Alternatively, if more than
95% of the true parameter values were found inside the estimated
95% Cl, we considered its length as overestimated, indicative of an
excessively conservative behaviour of parameter estimation. For
comparison, we conducted the above analysis using instead param-

eters estimated under the losing scenario Afr2P-Eur2P.

2411 | Comparing the accuracy of posterior
parameter estimations using NN, RF, or rejection ABC

We compared four ABC posterior parameter estimation methods:
NN-ABC estimation of the parameters taken jointly as a vector
(as described in the above procedures), NN-ABC estimation of the
parameters taken in turn separately, RF-ABC estimation of the pa-
rameters which also considers parameters in turn and separately
(Raynal et al., 2019), and simple Rejection-ABC estimation for each
parameter separately (Pritchard et al., 1999). For each method, we
used in turn the 1000 simulations closest to the real data as pseudo-
observed data and the 99,999 remaining simulations as reference
tables. We considered the same parameters for the NN, and we used
500 decision trees for the RF to limit the computational cost at lit-
tle accuracy cost a priori. We computed the three types of errors
and the accuracies of the 95% Cl for each ABC method as described
above.

3 | RESULTS

3.1 | Complex admixture scenarios cross-validation
with RF-ABC

We trained the RF-ABC scenario-choice algorithm using 1000 trees,
which guaranteed the convergence of the scenario-choice prior error
rates (Figure S3). Based on this training, the complete out-of-bag
cross-validation matrix showed that the nine competing scenarios of
complex historical admixture (Figure 1, Table 1) could be relatively
reasonably distinguished despite the high level of nestedness of the
scenarios here considered (Figure 2). Indeed, we calculated an out-
of-bag prior error rate of 32.41%, considering each of the 90,000
simulations, in turn, as out-of-bag pseudo-observed target data sets,
compared to a prior probability of 88.89% to erroneously select a
scenario. Furthermore, we found that cross-validation probabilities
of identifying the correct scenario ranged from 55.17% (prior proba-
bility = 11.11% for each competing scenario), for the two-pulses sce-
narios from both the African and European sources (Afr2P-Eur2P),
to 77.71% for the scenarios considering monotonically decreasing
recurring admixture from both sources (AfrDE-EurDE).

The probability, for a given admixture scenario, of choosing any
one alternative (wrong) scenario was on average 4.05% across the
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FIGURE 2 Random-Forest Approximate Bayesian Computation scenario-choice cross-validation. Heat map of the out-of-bag cross-
validation results considering each of the 10,000 simulations per each of the nine competing scenarios (Figure 1, Table 1) in turn as pseudo-
observed target for RF-ABC model-choice. Prior probability of correctly choosing a given scenario was 11%. Out-of-bag prior error rate
was 32.41%. RF-ABC scenario-choice performed using 1000 decision trees and 24 summary statistics (see Section 2)

eight alternative scenarios, ranging from 2.79% for the AfrDE-EurDE
scenario, to 5.60% for the Afr2P-Eur2P scenario (Figure 2). However,
cross-validation assignment errors, for a given true scenario, were not
uniformly distributed across the eight alternative scenarios. Instead,
Figure 2 shows that assignment errors were relatively less frequent
for classes of scenarios a priori more differentiated from the true
scenario. For instance, the Afr2P-Eur2P true scenarios were less
often confused (10.7%) with scenarios encompassing recurring ad-
mixture from both source populations (AfrDE-EurDE, Afrin-EurDE,
AfrDE-EurIN, AfrIN-EurIN), than with scenarios containing pulses
of admixture from one source population (34.0%; AfrDE-Eur2P,
Afr2P-EurDE, AfrIN-Eur2P, Afr2P-EurIN). Furthermore, note that
AfrDE-EurDE scenarios were rarely confused (3.8%) with recurring
scenarios containing at least one admixture increase (AfrIN-EurDE,
AfrDE-EurIN, AfrIN-EurIN). Across the nine nested competing sce-
narios of highly complex admixture processes, these results showed

a strong discriminatory power of RF-ABC scenario-choice a priori.

In cross-validation analyses of groups of scenarios (Estoup et al.,
2018), monotonically recurring admixture scenarios (AfrDE-EurDE,
AfrDE-EurIN, AfrIN-EurDE, AfrIN-EurIN) could be well distinguished
from scenarios considering two possible pulses after the founding
event (Afr2P-Eur2P, Afr2P-EurDE, Afr2P-EurIN, AfrDE-Eur2P,
AfrIN-Eur2P). Indeed, we found an out-of-bag prior error rate of
13.85%, and cross-validation probabilities of identifying the cor-
rect group of scenarios of 86.08% and 86.23% for the two groups,
respectively.

Detailed investigation of cross-validation results showed that
inaccuracies of RF-ABC scenario-choices occurred mainly in spaces
of values of parameters where scenarios were highly nested and,
in fact, close biologically (Figure 2). As expected, scenario-choice
increasingly mistook the AfrDE-EurDE scenarios for scenarios con-
taining two admixture pulses (Afr2P-Eur2P, Afr2P-EurIN, AfrIN-
Eur2P), as values of U,g and ug,, were closer to O, regardless of the

values of introgression rates (Figure S4a). Intuitively for the S-DE
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scenarios, values of the parameter u close to O corresponded to
steeper decreases of recurring admixture over time, which increased
scenario-choice confusion with pulse-like scenarios. Simulation with
u-values closer to 0.5 corresponded to linearly decreasing admix-
ture over time and could hardly be confounded with pulse-like sce-
narios. Furthermore, the scenario-choice increasingly confused, as
expected regardless of introgression values, Afr2P-Eur2P scenarios
with recurring increasing admixture scenarios (AfrIN-EurlN, AfrDE-
EurIN, AfrIN-EurDE), as the time of the second admixture pulse from
Europe or Africa became more recent (Figure S4b).

Most importantly, RF-ABC scenario-choice power to discriminate
among complex admixture processes a priori was not strongly affected
by the numbers of markers considered. Indeed, we found an out-of-
bag prior error of 33.53% and 37.93% (instead of 32.41%), considering
respectively 50,000 and 10,000 SNPs, instead of 100,000, together
with a very similar distribution of correct and mistaken cross-validation
assignments among scenarios (Figures S5a,b). Finally, dividing by five
the sample sizes in population H and each source population increased,
as expected, the cross-validation error rate (48.39%). Nevertheless, all
scenarios continued to be correctly identified three to six times more
often than expected a priori, and the distribution of erroneous predic-
tions remained similar to previously (Figure S5c).

Altogether, these results showed that RF-ABC scenario-choice
can be successfully used to distinguish highly complex admixture
models even when substantially less genetic and sample data are
considered. Finally, the estimated relative importance of each sum-
mary statistic for RF-ABC scenario-choice showed that the minimum,
maximum, 10%-quantile, 90%-quantile, variance, and skewness of
the distribution of admixture fractions among individuals in the ad-
mixed population were, among the 24 summary statistics used, the
most informative statistics for our scenario-choice cross validation

results (Figure S6).

3.2 | Simulating data similar to the observed data
with MeTHis

Using MeTHIs, we produced 90,000 vectors of 24 summary statistics
each, overall highly consistent with the observed ones for the ACB
and the ASW populations. First, each observed statistic was visually
reasonably well simulated under the nine competing scenarios here
considered (Figure S7). Second, the observed data each fell into the
simulated sets of 24 summary statistics projected in the first four
PCA dimensions (Figure S8). Finally, the observed vectors of sum-
mary statistics were not significantly different (p-value = 0.468 and
0.710, for the ACB and ASW respectively) from the simulated ones
using a goodness-of-fit approach (Figure S9). Therefore, we success-
fully simulated data sets producing sets of summary statistics rea-
sonably close to the observed ones, despite considering constant
effective population sizes, using fixed virtual source population
genetic pool-sets, and neglecting mutation during the admixture

process.

3.3 | Random-Forest ABC scenario-choice for the
history of ACB and ASW populations

We performed RF-ABC scenario-choice separately for the admixture
history of the ACB and the ASW populations, to evaluate whether
our MeTHis-ABC method could identify subtle differences in the his-
tory of both populations having experienced the TAST under the
British colonial empire (Baharian et al. 2016; Martin et al. 2017). For
the ACB, Figure 3 shows that the majority of votes (53.1%) went to
an admixture scenario AfrDE-EurDE with a posterior probability of
the winning scenario of 60.3%. This posterior probability was above
the mean posterior probability obtained when the wrong scenario
was chosen for the 1000 AfrDE-EurDE simulations closest to the
observed one (56.8%, SD = 11.6%, for 37 simulations wrongly as-
signed in total). The second most chosen scenario was the AfrDE-
Eur2P scenario. However, this scenario was voted for 3.5 times less
often than the winning scenario AfrDE-EurDE, gathering 15.1% of
the 1000 votes, only slightly above the 11.11% prior probability for
the nine competing scenarios (Figure 3; Table S1).

RF-ABC scenario-choice results were less decisive for the ASW
(Figure 3). The AfrDE-EurDE scenario also gathered the majority
of votes, albeit with lower posterior probability than for the ACB
(33.5% of 1000 votes, with posterior probability = 48.0%). This pos-
terior probability was slightly below the average posterior proba-
bility obtained when the wrong scenario was chosen for the 1000
AfrDE-EurDE simulations closest to the ASW observed data (50.7%,
SD = 7.9%, for 192 simulations wrongly assigned). The second most
chosen scenario, AfrDE-Eur2P, was only slightly less chosen with
31.7% of the votes (Figure 3, Table S1). Altogether these results de-
noted an ambiguity of the RF-ABC scenario-choice in the part of the
space of summary statistics occupied by the ASW.

Considering only these two best scenarios to train the RF and
reconducting ABC scenario-choice improved the scenario discrimi-
nation in favor of the AfrDE-EurDE scenario. While we found, again,
only a slight majority of votes (51.8%) in favour of the AfrDE-EurDE
scenario, the posterior probability for this scenario was substan-
tially increased to 57.9%, thus above the average posterior prob-
ability threshold calculated previously (50.7%). This indicated that
the AfrDE-EurDE scenario best explained the ASW observed ge-
netic patterns, despite overall limited discriminatory power of our
approach in the ambiguous part of the space of summary statistics
occupied by this population.

3.4 | Neural-Network ABC parameter
inference accuracy

For the ACB under the AfrDE-EurDE scenario (Figure 4a, Table 2),
we conducted a NN-ABC posterior parameter inference consider-
ing four neurons and a tolerance level of 1% (Table S2). We found
that the two recent admixture intensities from Africa and Europe

(Safr20 @Nd Sg, 00, respectively), and the steepness of the European
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FIGURE 3 Random-Forest Approximate Bayesian Computation scenario-choice predictions for the ACB (left panel) and ASW (right panel)
populations. Nine competing scenarios were compared, each with 10,000 simulations (Figure 1, Table 1), and 1,000 decision trees were
considered in the scenario-choice prediction, respectively for each population

recurring introgression decrease (ug,,), had sharp posterior densities
clearly distinct from their respective priors. Note that the cross-
validation error on these parameters in the vicinity of our real data
were low (average absolute error 0.02744, 0.0044, and 0.1084, re-
spectively for SAf20" SEur.20° and ug,,) (Table 3), and lengths of 95% CI
reasonably accurate (96.4%, 94.4%, 94.1% of 1000 cross-validation
true parameter values fell into estimated 95% Cl, Table S3).

Furthermore, the two ancient admixture intensities from Africa
and Europe at generation 1 (sAfr’1 and Seurts respectively), also had
posterior densities apparently distinguished from their prior dis-
tributions, but both had much wider 95% CI (Figure 4a, Table 2).
Consistently, we found a slightly increased posterior parameter error
in this part of the parameter space for both parameters, with aver-
age absolute error equal to 0.121 and 0.095, respectively for s, ,
and s, (Table 3). Nevertheless, note that 95.8% and 94.7% of
1000 cross-validation true values for those two parameters fell into
the estimated 95% ClI (Table S3). This showed that information was
somewhat lacking in our set of summary statistics for a more accu-
rate point estimation of these parameters, albeit our method was
reasonably conservative for these estimations.

Interestingly-, we found that accurate posterior estimation of the
steepness of the African recurring introgression decrease (u,,) was
difficult. Indeed, the posterior density of this parameter showed a
tendency towards small values only slightly departing from the
prior, indicative of a limit of our method to estimate this parame-
ter (Figure 4a, Table 2). Finally (Figure 4a, Table 2), we found that
we had virtually no information to estimate the founding admixture

proportions from Africa and Europe at generation 0, as our posterior
estimates barely departed from the prior, and as associated mean
absolute error was high (0.2530, Table 3). Nevertheless, our method
seemed to be performing reasonably conservatively for these two
latter parameters (95.6% and 95.3% of 1000 cross-validation true
parameter values fell into estimated 95% ClI, Table S3).

For the ASW under the AfrDE-EurDE scenario, our posterior pa-
rameter estimation results were overall less accurate compared to
those obtained for the ACB population, as indicated by overall larger
Cl and cross-validation errors (Figure 4b, Table 2, Table 3, Table S3).
This was consistent with the more ambiguous RF-ABC scenario-
choice results obtained for this population (Figure 3).

Note that, we conducted the above analyses under the losing
scenario Afr2P-Eur2P instead, for comparison. We found, as ex-
pected, that parameters and 95% Cl were very poorly estimated for
all parameters under this scenario (Tables S4 and S5). This indicated,
consistently, that no information was available in the ACB or ASW
data for accurate and conservative estimation of the parameters of
the losing scenario Afr2P-Eur2P using ABC.

3.5 | Comparing NN, RF, and Rejection ABC
posterior parameter estimation accuracy

The three types of posterior parameter estimation errors (scaled
mean-squared error, mean-squared error, average absolute error)

were systematically lower for the two NN methods (joint or
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FIGURE 4 Neural-Network Approximate Bayesian Computation posterior parameters estimated densities under the winning scenario
AfrDE-EurDE, for (a) the ACB and (b) the ASW populations. Median posterior point estimates are indicated by the red vertical line, 95%
credibility intervals are indicated by the colored area under the posterior density-curve (Table 2). All posterior parameter estimations were
conducted using 100,000 simulations under scenario AfrDE-EurDE, a 1% tolerance rate (1000 simulations), 24 summary statistics, logit
transformation of all parameters, and four neurons in the hidden layer (see Section 2). For all parameters separately, densities were plotted
with 1000 points, a Gaussian kernel, and were constrained to the prior limits. Posterior parameter densities are indicated by a solid line; prior

parameter densities are indicated by black dotted lines

independent posterior parameter estimations) than for the RF and
Rejection independent posterior parameter estimations (Table 4).
Altogether, these results showed that considering the NN estima-
tion for parameters taken jointly as a vector was overall preferable,
since it further allowed the joint interpretation of parameter values
estimated a posteriori with little accuracy loss.

The lengths of 95% Cl estimated with NN joint parameter es-
timation were, across all parameters, more accurate than those
obtained with all other methods with, on average, 95.1% and

95.2% of true parameter values falling within the estimated 95%

Cl, for the ACB and ASW respectively (Table S3). Furthermore, the
lengths of 95% CI estimated with NN and RF independent pos-
terior parameter estimations were systematically underestimated,
with less than 94% of the true parameter values falling into the es-
timated 95% CI. Finally, the lengths of 95% Cl estimated with the
Rejection method were also rather accurately estimated, although
on average slightly overestimated compared to the NN joint esti-
mation with, on average, 95.5% of the 1000 cross-validation true
parameter values within the estimated 95% CI for the ACB, and
95.8% for the ASW.
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TABLE 2 Neural-Network Approximate Bayesian Computation posterior parameter weighted distributions under the winning scenario

AfrDE-EurDE, for the ACB and ASW populations

AfrDE-EurDE

Admixed population parameters Median Mean Mode 95% credibility interval

ACB SAfr0 0.3097 0.3747 0.1121 [0.0116; 0.9347]
Safr1 0.6797 0.6769 0.6813 [0.4577;0.8880]
SAfr20 0.2707 0.2655 0.2788 [0.1985; 0.2967]
Ung, 0.1409 0.1684 0.0508 [0.0041; 0.4507]
Stura 0.1807 0.2160 0.1158 [0.0542; 0.5525]
SEur.20 0.0100 0.0102 0.0093 [0.0018; 0.0200]
Ugyr 0.4858 0.4627 0.4929 [0.1886; 0.4992]

ASW SAfr0 0.5258 0.5124 0.7015 [0.0262; 0.9758]
Safrd 0.6006 0.6026 0.6081 [0.3506; 0.8581]
SAfr20 0.2352 0.2286 0.2385 [0.1222; 0.2714]
Upntr 0.0662 0.1105 0.0253 [0.0025; 0.4393]
SEurt 0.2917 0.3080 0.2203 [0.1048; 0.5951]
SEur20 0.0180 0.0189 0.0157 [0.0022; 0.0389]
Ugyr 0.4250 0.3966 0.4567 [0.1077; 0.4950]

All posterior parameter estimations were conducted using 100,000 simulations under the AfrDE-EurDE scenario (Figure 1, Table 1), a 1% tolerance
rate (1,000 simulations), 24 summary statistics, logit transformation of all parameters, and four neurons in the hidden layer (see Section 2).

TABLE 3 Neural-Network Approximate Bayesian Computation posterior parameter errors under the winning scenario AfrDE-EurDE, for
the ACB and ASW populations

ACB ASW
Av. absolute Mean-square Mean-square Av. absolute Mean-square Mean-square
AfrDE-EurDE parameters error error error/var. error error error/var.
SAfr0 0.2530 0.0857 1.0070 0.2444 0.0805 1.0081
Safrd 0.1206 0.0216 0.8533 0.1158 0.0197 0.9259
SAfr20 0.02744 0.0012 0.4162 0.0219 0.0007 0.4773
Ui 0.1166 0.0198 0.9974 0.1254 0.0216 0.9757
Skurt 0.0952 0.0164 1.0526 0.1001 0.0157 1.0152
SEur20 0.0044 0.0001 0.6452 0.0069 0.0001 0.6623
Ugyr 0.1084 0.0174 0.9431 0.1021 0.0153 0.8036

For each target population separately, we conducted cross-validation by considering in turn 1000 separate NN-ABC parameter inferences each using
in turn one of the 1000 closest simulations to the observed ACB (or ASW) data as the target pseudo-observed simulation. All posterior parameter
estimations were conducted using 100,000 simulations under the AfrDE-EurDE scenario (Figure 1, Table 1), a 1% tolerance rate (1000 simulations),
24 summary statistics, logit transformation of all parameters, and four neurons in the hidden layer (see Section 2). Median was considered as the
point posterior parameter estimation for all parameters. First column provides the average absolute error; second column shows the mean-squared
error; third column shows the mean-squared error scaled by the parameter's observed variance (see Section 2 for error formulas)

3.6 | Admixture histories of the African American
ASW and Barbadian ACB

Figure 5 visually synthesizes the estimated posterior parameters of
the complex admixture scenarios reconstructed with the MetHis-
ABC framework, and associated 95% Cl (Table 2).

We found a virtual complete replacement of the ACB and ASW
populations at generation 1, thus consistent with our inability to
accurately estimate the founding proportions from the African
and European sources at generation 0. Furthermore, we found an

increasingly precise posterior estimation of introgression rates
forward-in-time. This is also consistent with the nature of recurrent
admixture processes, where older information may be lost or re-
placed when more recent admixture events occur.

Interestingly, we found that the recurring introgression from the
European gene pool rapidly decreased after generation 1, for both
the ACB and ASW, albeit with substantial differences (Figure 5).
Indeed, we found that, for the ACB, European introgression falls
below 10% at generation 9 to no more than 1% in the present.
Comparatively, the European contribution diminished substantially
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TABLE 4 Approximate Bayesian Computation mean posterior parameter errors over all parameters under the winning Scenario AfrDE-
EurDE, for the ACB and ASW populations separately, using four different methods: NN estimation of the parameters taken jointly as a
vector, NN estimation of the parameters taken separately, Random-Forest (parameters taken separately), and Rejection (parameters taken

separately)

ACB ASW
Posterior parameter Av. absolute Mean-squared Mean-squared Av. absolute Mean-squared Mean-squared
estimation ABC method error error error/var. error error error/var.
NN joint 0.1037 0.0232 0.8450 0.1024 0.0219 0.8383
NN independent 0.1032 0.0236 0.8294 0.1025 0.0225 0.8344
RF independent 0.1042 0.0246 0.8534 0.1036 0.0233 0.8697
Rejection independent 0.1071 0.0238 0.9299 0.1050 0.0223 0.8951

For each target population separately and for each method, we conducted an out-of-bag cross validation by considering in turn 1000 separate
parameter inferences each using one of the 1000 closest simulation to the observed ACB (or ASW) data as the target pseudo-observed data set. All
posterior parameter estimations were conducted using the remaining 99,999 simulations under the AfrDE-EurDE scenario (Figure 1, Table 1), a 1%
tolerance rate (i.e., 1000 simulations), 24 summary statistics, logit transformation of all parameters, four neurons in the hidden layer per Neural-
Network and 500 trees per Random-Forest. Median was considered as the point posterior parameter estimation for all parameters. The first column
provides the average absolute error; second column shows the mean-squared error; third column shows the mean-squared error scaled by the

parameter's observed variance (see Section 2 for error formulas).

less rapidly for the ASW, going below 10% only after generation 12
to roughly 2% in the present. Therefore, it seemed that neither sus-
tained European migrations, nor the relaxation of social and legal
constraints on admixture subsequent to the abolition of slavery and
the end of segregation, have translated into increased European ge-
netic contribution to the gene-pool of admixed populations in the
Americas.

Finally, we found substantial recurring contributions from the
African source for both admixed populations (Figure 5). For the ACB,
we found a progressive decrease of the African recurring introgres-
sion until a virtually constant recurring admixture close to 28% from
generation 10 onward. For the ASW, our results showed a sharper
decrease of the African contribution after founding until a virtually
constant recurring admixture process close to 24% from generation
5 onward. Nevertheless, the ASW occupy an ambiguous region of
the parameter space, and results should be considered cautiously,
as another complex admixture model might more accurately ex-
plain this data. Altogether, the signal of substantial ongoing admix-
ture from Africa could have emerged due to the known importance
of African recurring forced migrations during the TAST into the
Americas, as well as from enslaved-African descendants migrations
within the Americas before and after the end of slavery (Baharian
et al.,, 2016; Fortes-Lima et al., 2018).

4 | DISCUSSION

Our novel MeTHis forward-in-time simulator and summary statistic
calculator coupled with RF-ABC scenario-choice could distinguish
among highly complex admixture histories using genetic data. As
expected, scenario-choice errors were particularly made in regions
of the parameter space for which scenarios were highly nested
(Robert et al., 2010), and, thus, biologically similar. Furthermore, we
found that NN-ABC provided accurate and reasonably conservative

posterior parameter estimation for numerous parameters of the
winning scenario, using human population data as a case study.
Finally, we empirically demonstrated that the moments of the distri-
bution of admixture fractions in the admixed population were highly
informative for ABC inference, as expected theoretically (Gravel,
2012; Verdu & Rosenberg, 2011).

In general, the machine-learning ABC approaches here de-
ployed for reconstructing highly complex admixture histories
provided significant improvements for population genetics de-
mographic inferences using genetic data. First, RF algorithms are,
by nature, categorization algorithms and therefore a priori con-
ceptually particularly well suited for scenario-choice inferences
as compared to, for instance, previous regression-based ABC
scenario-choice algorithms (Beaumont et al., 2002). In addition,
they substantially reduce the simulation costs while improving
scenario-choice performances, as compared to previous ABC
scenario-choice algorithms that classically require 10-100 times
more simulations (Pudlo et al., 2016). Finally, RF-ABC scenario-
choice allow exploring, in detail, the relative contribution of each
summary statistic to the scenario-choice, in addition to being in-
sensitive to correlations among statistics. These improvements
can thus both improve the user's understanding of the general
behavior and performances of the scenario-choice inference pro-
cedures applied to her/his specific study-case, and alleviate the
major difficulty induced by large spaces of summary statistics
encountered in previous ABC scenario-choice approaches (Sisson
et al., 2018). Nevertheless, posterior parameter estimation with
RF-ABC remains difficult, as it only allows estimating the quantiles
of the posterior parameters independently, rather than the full
posterior distributions of the parameters estimated jointly (Raynal
et al., 2019).

Second, NN-ABC parameter inference also provide a promis-
ing line of future developments for posterior parameter inference
based on high dimensional parameter spaces. Indeed, using NN
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FIGURE 5 Approximate Bayesian Computation inference of the admixture history of the ACB and ASW populations respectively. Top
panels are based on median point-estimates of parameters for the relative contribution of each source to the gene pool of the admixed
target population ACB and ASW, at each generation. Bottom panels show 95% credibility intervals for each inferred parameter around
the median point-estimates. The African introgression is plotted in orange, the European introgression in blue, and in green the remaining

contribution of the admixed population to itself at the following generation. Left column presents results for the ACB under the AfrDE-
EurDE winning scenario; Right column presents results for the ASW under the AfrDE-EurDE winning scenario

methods allows for the joint estimation of all model parameters by
weighting the informativeness of each summary statistic about the
parameters, beyond what most other ABC parameter-inference

all the possibilities brought by posterior parameter inferences
methods can do. Nevertheless, future studies will need to explore

with NN, such as increasing the number of layers of hidden neu-
rons, fine-tuning the NN procedures respective to the specific

weighting of each summary statistics’ importance for posterior



FORTES-LIMA ET AL.

1114 MOLECULAR ECOLOGY
WILEY

parameter estimations, and/or different NN algorithms for explor-
ing the space of summary statistics (Csilléry et al., 2012). These
will allow researchers to fully benefit from the power of this novel
conceptual way of extracting information about model parameters
from population genetics statistics computed from genetic data.

Altogether, our results for the two recently-admixed human
populations illustrated how our MeTHIs-ABC framework can bring
fundamental new insights into the complex demographic history of
admixed populations; a framework that can easily be adapted, using
MeTHis (Note S1), for investigating complex admixture histories
when ML methods are intractable.

We considered nine competing scenarios all deriving from the
general mechanistic admixture model of Verdu and Rosenberg
(2011). While the two-source version of this model can readily be
simulated with MeTHis, it considers 2g-1 model parameters (with g
the duration of the admixture process), plus effective population size
parameters and mutation parameters. Estimating jointly all these pa-
rameters is out of reach of ML methods, and further probably out of
reach of ABC posterior parameter estimation procedures. However,
conducting ABC scenario-choice for disentangling major classes of
relatively simplified admixture processes followed by ABC parame-
ter estimation under the winning scenario, is flexible enough to bring
new insights into the evolutionary history of admixed populations,
far beyond all admixture scenarios that can be explored with existing
ML methods (Gravel, 2012; Hellenthal et al., 2014).

The sample and SNP set explored here is often out-of-reach in
non-model species. Nevertheless, our results considering vastly
reduced SNP or sample sets demonstrated that ABC could remain
remarkably accurate for disentangling highly complex admixture
processes with much less genetic or sample data. This is due to the
fact that ABC relies on the amount of information carried by sum-
mary statistics about model parameters, rather than on the absolute
amount of genetic data investigated. Therefore, the MeTHIs-ABC
framework remains promising to reconstruct complex admixture
histories in study-cases with substantially fewer genetic and sample
data, provided that the summary statistics considered by the user
are, a priori, informative about model parameters, and that they are
reasonably well estimated for the observed data. Altogether, large
spaces of parameters and summary statistics, lack of information
from summary statistics, and scenario nestedness, are well known
to affect ABC performances and, thus, imperatively need to be thor-
oughly evaluated case by case (Csilléry et al., 2010; Robert et al.,
2010; Sisson et al., 2018).

To further increase the range of applicability of our MeTHis-ABC
framework, our software readily implements microsatellite mark-
ers together with a general stepwise mutation model (Estoup et al.,
2002), fully parameterizable by the user (Note S1). This will allow in-
vestigating numerous complex admixture histories from non-model
species for which large amounts of SNP data are less frequently
available, but for which microsatellite markers are readily available.

Even if prior knowledge of the date for the founding admix-
ture event is lacking, MeTHIs users can simply set the founding of
the admixed population in a remote past and implement a second

founding event with variable date to be estimated with ABC, to-
gether with later additional admixture events and other parame-
ters of interest. Nevertheless, it is not trivial to predict how old
admixture processes can be to remain successfully investigated
with ABC (Buzbas & Verdu, 2018). Indeed, ancient admixture pro-
cesses could leave scarcely identifiable signatures in the observed
data, if they have been obliterated by more recent admixture
events. This was theoretically expected (Buzbas & Verdu, 2018),
and future studies combining ancient and modern DNA samples
may bring further information into the reconstruction of ancient
admixture history.

Importantly, the computational cost of our study depends, for
2/3, on the calculation of all summary statistics at the end of the
admixture process, as is often the case in ABC. Considering much
longer admixture processes than the ones here investigated will me-
chanically increase computation time but will not increase summary
statistics calculation time. Furthermore, note that the computational
cost of simulating data with MeTHIs does not rely excessively on the
number of generations considered (within reason), nor on the abso-
lute number of markers used, but rather on the effective population
size in the admixed population set by the user.

Although MEeTHIs readily allows considering changes of effective
population size in the admixed population at each generation as a
parameter of interest to ABC inference (Note S1), we did not, for
simplicity, investigate here how such changes affected our results.
Future work using MeTHis will specifically investigate how effective
size changes may influence genetic patterns in admixed populations,
a question of major interest as numerous admixed populations have
experienced bottlenecks during their genetic history (e.g., Browning
etal., 2018).

The current MeTHIs-ABC approach does not make use of ad-
mixture linkage-disequilibrium patterns in the admixed popula-
tion, and only relies on independent SNP or microsatellite markers.
Nevertheless, admixture-LD has consistently proved to bring mas-
sive information about complex admixture histories in popula-
tions where large genomic data sets were available (Gravel, 2012;
Hellenthal et al., 2014; Malinsky et al., 2018; Medina et al., 2018; Ni
et al., 2019; Stryjewski & Sorenson, 2017). However, existing meth-
ods to calculate admixture-LD patterns remain computationally in-
tensive and require both dense marker-sets and accurate phasing,
which is difficult under ABC where such statistics have to be cal-
culated for each one of the numerous simulated data sets. In this
context, RF-ABC (Pudlo et al., 2016; Raynal et al., 2019), or AABC
(Buzbas & Rosenberg, 2015), methods substantially reduce the
number of simulations required for satisfactory ABC inference. This
makes both approaches promising for using, in the future, admix-
ture-LD patterns to reconstruct complex admixture processes with
ABC using genomic data.

Finally, future developments of the MEeTHIs-ABC framework
will focus on implementing sex-specific admixture models, as these
processes are known to affect genetic diversity patterns in a spe-
cific way, and are of interest to numerous study-cases (Goldberg
et al., 2014). Furthermore, the MeTHis forward-in-time simulator
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represents an ideal tool to further investigate admixture-related se-
lection forces, and admixture-specific assortative mating processes,
as these processes can simply be modeled by specifically parameter-
izing individual reproduction and survival in the simulations, unlike

most coalescent-based simulators.
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3.3 Plateau technique Paléogénomique
et génétique moléculaire P2GM

Le plateau technique Paléogénomique et génétique moléculaire (P2GM) de 'UMR7206
Eco-anthropologie a été intégré, des 2016, a la plateforme analytique du Muséum National
d’Histoire Naturelle (PAM). Il est mutualisé par 'UMR7206 aux laboratoires du MNHN et
des autres organismes de recherche francais et internationaux, et réalise des travaux
d’expertise.

Présentation

Le plateau P2GM (https://www.ecoanthropologie.fr/fr/plateau-technique-6204)
comprend différents espaces et équipements mutualisés afin d’analyser tous types de
matériaux génétiques et de réaliser des dosages endocrinologiques. P2GM comprend
notamment des espaces dédiés aux extractions, préparations de librairies, amplifications
et qualifications des ADN: une salle blanche pour I'’ADN ancien et dégradé et des
laboratoires pour 'ADN moderne ou amplifié. Les environnements de ces espaces sont
strictement contrélés pour limiter toute contamination. Le personnel de 'UMR7206 est
affecté a P2GM : deux ingénieurs d’études (Sophie Lafosse CNRS et José Utge MNHN) et
deux assistantes ingénieures (Francoise Dessarps-Freichey CNRS, fin de carriere en 2020,
et Amélie Chimenes CNRS) sont les responsables scientifiques et techniques des projets
et responsables opérationnels des projets externes. P2ZGM est coordonné par Paul Verdu
(CR CNRS) et Céline Bon (MC MNHN) (Figure 1).

Entre 2017 et 2022, 5 membres de 'UMR7206 (hors-P2GM) ont réalisé leurs analyses sur
P2GM ainsi que plus de 20 chercheurs, ingénieurs et étudiants extérieurs a I'unité. 43
étudiants, du BTS jusqu’au post-doctorat, ont été formés en partie sur P2ZGM. P2GM a
contribué a 29 articles scientifiques, plus de 50 communications a des congres, et plus de
40 rapports de stages, théses de doctorat et habilitations a diriger des recherches.

§"=‘It,eau, de — P2GM Comité de Pilotage Scientifique
o
= il " Céline Bon (MC-MNHN ; UMR7206)
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Figure 1 : organigramme de P2GM au 31 décembre 2022
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Activités scientifiques

Entre 2017 et 2022, 129 projets ont été menés sur P2GM. Les six équipes de 'UMR7206
ont toutes conduit plusieurs projets sur P2GM. Ainsi, P2GM est un outil
d’interdisciplinarité et d'innovation scientifique pour toute 'UMR7206, dont I'expertise
en analyse des ADN, notamment anciens et dégradés, est sollicitée par d’autres UMR. Nous
présentons trois projets illustrant la diversité de ces activités scientifiques.

Evolution de la diversité génétique humaine autour de la Mer Caspienne

Pour étudier les mouvements de populations humaines en Asie Centrale et dans le sud du
Caucase du Néolithique a I’Age du Fer, 'ADN de 138 échantillons a été extrait par les
membres de P2GM dans la salle blanche, permettant d’éclaircir les mécanismes de
néolithisation dans le sud du Caucase (Guarino-Vignon et al. Comm Biol 2022), la
structure génétique des populations de la Civilisation de 'Oxus a I’Age du Bronze
(Guarino-Vignon et al. Front Genetics 2022), ainsi que celle de I'lran a I’Age du Fer (in
prep). Ces données paléogénétiques ont nourri le doctorat de Perle Guarino-Vignon en
collaboration entre les équipes AGene et ABBA de 'UMR7206 et d’autres unités
(UMR7209, UMR5133, UMR7192).

Figure 2 : Extraction d'ADN ancien humain d'Asie Centrale dans la salle blanche de P2GM

Détermination des relations de parenté entre primates sauvages

Pour comprendre la structure sociale de primates non humains dans leur environnement,
P2GM a réalisé I'extraction d’ADN dégradé de 186 feces de Gorilles de I'Ouest collectées
en RCA. Ces extraits ont été génotypés pour 10 marqueurs microsatellites mis au point
sur P2GM, puis analysés par des méthodes de génétique des populations avec les équipes
AGene et IPE de 'UMR7206. Les résultats montrent que les males dispersent sur de
grandes distances alors que les femelles dispersent tres localement en évitant les
reproductions consanguines (Masi et al. Mol Ecol Evol 2021). Ce projet se poursuit a une
échelle régionale a partir de féces collectées au Cameroun, en RDC et en RCA. Ces
approches ont ensuite été appliquées a des populations de Chimpanzés du Sénégal dans
plusieurs expertises menées par P2GM pour des sociétés privées (Oryx, Sylvatrop), dans
le cadre d’études d'impact de projets industriels sur la conservation de la biodiversité
locale.



Figure 3 : Shelly Masi tudiant les Gorilles de I'Ouest en RCA ©Marcella Sana

Projet TARA

Dans le cadre du projet TARA-Ocean, P2GM et I'équipe de Chris Bowler (IBENS, ENS) ont
mis au point un protocole d’analyse de sédiments sous-marins anciens afin d’étudier
I’évolution de la diversité des diatomées. Les méthodes d’analyses métagénomiques en
shotgun et en metabarcoding ont permis de montrer que les reconstructions paléo-
environnementales a partir de sédiments peuvent étre biaisées selon les méthodes
utilisées (Armbrecht et al. ISME Com 2021). Cette étude a fait I'objet du post-doctorat de
Linda Armbrecht et se poursuit sur P2ZGM avec les doctorats de Mathilde Bourreau
(IBENS) et Manon Sabourdy (UMR5805) sur la réponse des micro-organismes marins aux
changements climatiques passés et présents.
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Figure 4 : A) Extraction de 'ADN d’échantillons de sédiments marins anciens en salle blanche sur P2GM, B)
Amplification qPCR : les échantillons apparaissent en vert, les contrdles négatifs en rouge. C) Distribution des
longueurs de fragments d’ADN dans un échantillon sédimentaire marin ancien caractérisée par électrophorése
en capillaire LabChip.



Covid19 et confinement

Durant les périodes de confinements dus au Covid 19 en 2020, P2GM s’est mobilisé pour
fournir a 'AERES les équipements de protection personnelle a sa disposition. Avec I'aide
de 'UMR7194, P2GM a aussi produit plus de 50L de solution hydroalcoolique pour les
personnels d’astreinte au MNHN. Amélie Chimenes a été déployée a sa demande par le
CNRS pour la réalisation de tests PCR COVID a I'Hopital Grand-Est (https://www.paris-
centre.cnrs.fr/fr/cnrsinfo /face-au-covid-19-scientifiques-benevoles-en-renfort-hopital-

marne-la-vallee).

Figure 5 : Préparation de 25L de solution
hydroalcoolique sur P2GM pour les
personnels d’astreinte au MNHN en Mai
2020.

Activités de diffusion scientifique et formation

Les membres de P2GM sont impliqués dans I'enseignement et la formation permanente
par la mise en place de plusieurs stages pour les personnels du MNHN, un TP dans le cours
Museum « Paléogénétique des restes archéologiques », et une journée de formation
permanente pour les personnels techniques de ’APHP.

En outre, P2ZGM a participé a de nombreuses actions de diffusion aupres du grand public :
- plus de 30 interviews dans la presse écrite et audiovisuelle

- ateliers d’extraction d’ADN a la Féte de la Science et aupres de publics scolaires

- conseil scientifique d’une piece de théatre (https://theatre-cite.com/programmation/a-
venir/spectacle/neandertal-et-ceux-qui-dansaient)

- présentation de la paléogénétique lors des Journées Européennes de I’Archéologie

- participation a des documentaires télévisés, comme celui consacré a I'étude d'un crane
du XVIlleme siecle: Bruto (https://www.france.tv/documentaires/voyages/2604281-
bruto.html).

Figure 6 : Tournage du documentaire
« Bruto » sur P2GM avec la réalisatrice
Carole Grand.
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